MASSACHUSETTS MATHEMATICS LEAGUE OCTOBER 2003
 ROUND 1: VOLUMES \& SURFACES

ANSWERS

A)
B)
C) \qquad
A) A right circular cylinder of height 9 cm and diameter 8 cm has a hole of diameter 4 cm drilled out of its center* Find the total surface area of solid remaining leaving the result in terms of pi. $\boldsymbol{*}=($ along the axis of symmetry $)$
B) A right circular cone, apex down as shown, has a slant height of 5 cm and a base diameter of 6 cm . A hemisphere is sitting on top of the cone. Find the volume in terms of pi of the solid formed by the cone and the hemisphere.

C) The truncated cone shown was formed by cutting off the top of a right circular cone with a plane parallel to its base. The radii of the bases of the truncated cone are 10 cm and 16 cm while its height is 12 cm . Calculate the volume of truncated cone in terms of pi.

MASSACHUSETTS MATHEMATICS LEAGUE

OCTOBER 2003

ROUND 2: PYTHAGOREAN RELATIONS

ANSWERS

A) \qquad
B)
C) \qquad
A) The diagonal of square ABCD is 6 , and three 45-45-90 triangles adjoin it on the right in succession. The length of the leg labeled x is the reduced fraction a / b. Find the value of $a+b$.

B) In $N O P M, M N=M P=7, \angle N M P=\angle N P O=90^{\circ}$, and $\angle O=30^{\circ}$. Calculate PO in simplified radical form.

C) In tetrahedron $\mathrm{A}-\mathrm{BCD}, \overline{A D} \perp$ plane $B C D, \mathrm{AB}=10, \mathrm{BD}=8, \angle C A D=\angle D C A$, and $\angle B D C=60^{\circ}$. Calculate BC in simplified radical form.

MASSACHUSETTS MATHEMATICS LEAGUE OCTOBER 2003
 ROUND 3: LINEAR EQUATIONS

ANSWERS

A)
B)
C)

simplsfied

A) Solve for x, leaving the result as a fraction

$$
4(x-3)+3(x+7)-\frac{6}{5}(5 x+10)=\frac{2}{3}(x-5)-\frac{1}{3}(x+4)
$$

B) The coins from Jeremy's tips total $\$ 316$. He has two more dimes than quarters, one less than twice as many nickels as dimes, and three more pennies than dimes. How many coins does he have?
C) Karin's exercise route is 4 miles long She alternates running one-quarter mile at ten mph , and then walking one-half mile at five mph How many minutes does it take her to complete her route?

MASSACHUSETTS MATHEMATICS LEAGUE OCTOBER 2003
 ROUND 4: FRACTIONS \& MIXED NUMBERS
 NON-CALCULATOR

ANSWERS
A)
B)
C)
A) If $\frac{1}{a(b+1)}+\frac{1}{b(a+1)}=\frac{1}{(a+1)(b+1)}$, what is the value of $\frac{1}{a}+\frac{1}{b}$?
B) The numerator of a fraction is two less than the denominator. When both the numerator and the denominator are increased by five, the result is $4 / 3$ of the original fraction. Find all possible original fraction? alions.
C) If $\frac{x-3 y}{x+2 y}=4 \frac{2}{3}$, what is the value of $\frac{3 x}{4 y}$ expressed as a fraction?

MASSACHUSETTS MATHEMATICS LEAGUE OCTOBER 2003 ROUND 5: INEQUALITIES \& ABSOLUTE VALUES ANSWERS

'A)
B)
C)
A) Solve for $\mathrm{x}: x^{3}<5 x^{2}+24 x$.
B) Solve for x : $|4-2 x|=x^{2}-3 x+2$
C) Solve for $\mathrm{x}: \frac{1}{x^{2}}-\frac{5}{x}<24$

MASSACHUSETTS MATHEMATICS LEAGUE OCTOBER 2003 ROUND 6: EVALUATIONS

ANSWERS
A)
B) \qquad
C)
A) If $4 x+5 y+6 z+3 w=12$, and $2 x+3 y+4 z+w=8$; find the value of $x+y+z+w$.
B) If $x+y=7$ and $x-y=3$, what is the value of $3^{2 x-3 y}$?
C) Find the value of $(234567891)(234567891)-(234567895)(234567887)$.

ANSWERS

A)
D)
B) \qquad E)
C) F)
A) An ice cream cone has the shape of a squâre pyramid of height 5 inches where the side of the square base is 4 inches. A spherical scoop of ice cream of diameter 4 inches is placed in the cone. If the ice cream were allowed to melt, the volume of ice cream that would overflow the cone is $\frac{a-b \pi}{3}$. Find the ordered pair (a, b).
B) In rectangle $A B C D, E$ is on diagonal $A C$ so that $A E: A D: E C=2: 3: 4$, and $B C=39$. Calculate EB in simplified radical form.
C) Jon has a number of coins in his pocket. Eleven of them are nickels, one-seventh are dimes, and one-third are pennies. What is the total value of Jon's coins? (the has only pennies, niekels, and dimes)
D) Solve for $\mathrm{x}:\left(\frac{x+3}{x-1}\right)^{2}-6=\frac{x+3}{x-1}$
E) Solve for $\mathrm{x}:\left(\frac{x+1}{x-2}\right)^{2}-\frac{x+1}{x-2}-2<0$
F) Given $x^{*} y=2 x+3 y$, solve the equation $\left(3^{*} a\right) *(a * 3)=24 * 13$ for a.

MML: OCTOBER 2003 Contest \#1

Round 1: Geometry: Volume/Surface Area
A) $\quad 132 \pi \mathrm{~cm}^{2}$
B) $24 \mathrm{~cm}-30 \pi^{i i^{3}}$
C) $2064 \pi \mathrm{~cm}^{3}$

Round 3: Linear Equations
A) $-5 / 2$
B) 40
C) 39

Round 5: Inequalities and Absolute Value
A) $x<-3$ or $0<x<8$
B) $-1,2,3$
C) $x<-1 / 3$ or $x>1 / 8$

Round 2: Pythagorean Theorem
A) 5
B) $7 \sqrt{6}$
C) $2 \sqrt{13}$

Round 4: Fractions and Mixed Numbers
A) -1
B) $3 / 5$ and -10/-8 (may not be reduced)
C) $\quad \mathbf{- 1 1 1} / 44$

Round 6: Evaluations
A) 2
B) $\mathbf{8 1}$
C) 16

Round 7: Team
A) $(-80, \ldots)$
B) $13 \sqrt{13}$
C) 92ϕ
D) $3,-1 / 3$
E) $x<1 / 2$ or $x>5$
F) 4

 O(IOBIR 2003

1\くWIRC

1) 13214
B) $\vdots \geq 1$
() 2064π

 terms of pl Fि-4 $\quad 2 \quad 1 \quad\rangle$

$$
\begin{aligned}
& 2 \pi-1=36 \pi
\end{aligned}
$$

$$
\begin{aligned}
& 19-10 \sigma^{2}+24 \pi-15=\pi
\end{aligned}
$$

B) Arr ht circular cone apes down as shown has a slant height of 5 cm and a base diameter of 6 cm i hemisphere is sitting on top of the cone Find the volume in terms of pi of the solid formed by the cone and the hemisphere

$$
V_{S}=\frac{4}{3} \pi r^{3} \quad v_{c} \frac{1}{3} \pi r^{2} h \quad v_{-}-\frac{1}{3} \pi \cdot 3^{2}, 4=12 \pi
$$

$$
r=3, h-\sqrt{5^{2}-3^{2}}=4
$$

$$
V_{s}-\frac{4}{3} \pi 3^{3}-\frac{2}{3} 27 \cdot \pi=18 \pi \quad \text { Ans } 30 \pi
$$

() The timmated cone shown was formed br cutting off the top ot a for ht circular cone with a plane p rallel to ats base I he adm of the bases of the wame ate conc we lo em and 16 em e while it height is 12 cm Calculate the volume of truncated cone in terms of pl

$$
\begin{aligned}
& V=\frac{1}{3} \pi \ln \left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right) \\
& -\frac{1}{3} 12 \pi(100+160+25 l)=4 \pi, 516 \\
& =2064 \pi
\end{aligned}
$$

IISSICHUSETTS MATHEMATICS LEAGUE
 OC COMER 2003
 ROUND 2: PYTHAGOREAN RELATIONS

ANSWERS
A)

B) $7 \sqrt{6}$ \qquad
C) $2 \sqrt{13}$
 sumesum the length of the leg labeled s is the reduced fraction arb find the value of a b

B) In $\mathrm{NOPM}, ~ \triangle 1 N=M P=7, \quad \angle N M P=\angle N P O=90^{\circ}$, and $\angle O=30^{\circ}$ Calculate PO in simplified radical form

C) In tetrahedron $\mathrm{A}-\mathrm{BCD}, \overline{A D} \perp$ plane $B(I), \mathrm{AB}=10, \mathrm{BD}=8 \angle(A D=-I)(A$, and lila)($60^{\prime \prime}$ Calculate $B C$ in simplified radical form

MASSACHI SETTS MATHEMAIIC I Y \G ;if
 OCTOBER 2003
 ROUNI 3: LINEAR EQUATIONS

ANSWERS
A) $-5 / 2$
B) \ldots. 0
(c) 39

$$
\begin{aligned}
& 4(x \quad 3) \cdot 3(x \cdot 3){ }_{5}^{6}(5 x+10)=\frac{2}{3}(x-3) \quad 1 \quad 4 x+3 x+\frac{2}{3} x-\frac{10}{3}-\frac{1}{3} x-\frac{4}{3} \\
& 4 x-12+3 x-3=\frac{1}{3} x-\frac{14}{3} \\
& x-3-\frac{14}{3}=-\frac{5}{3} \\
& \frac{2}{3} x=3 \\
& x=-\frac{5}{2}
\end{aligned}
$$

B) The coins from Jeremy's tips total $\$ 316$ He has two more dimes than quarters, one less than twice as many nickels as dimes, and three more pennies than dimes How many coins does he have?
$D=$ म dimes $25(D-2)+10 D+5(2 D-1)+(D+3)=316$
$Q=D-2 \quad 25 D-50+10 D+10 D-5+1 D+3=316$
$N=2 D-1 \quad 46 D-52=316 \quad 9=6$
$P=D+3$

$$
\begin{array}{cl}
460=368 & N=15 \\
0=8 & F=11
\end{array}
$$

$$
N=15 \quad \text { ANS } 40
$$

C) Karin`s exercise route is 4 miles long She altemates summing one-quarter mile at ten mph, and then walking one-half mic at five mph How many mut, aces it take her to complete her row to

$$
\begin{aligned}
& \begin{array}{llllllllllll}
R & R & R & W & R & W & W & R & W & R & W & R \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
4 & G=\frac{3}{2} & m, r u n n i n g
\end{array} \\
& \frac{3}{2} \cdot \frac{1}{10} \cdot 60+\frac{5}{2} \cdot \frac{1}{5} \cdot 60=\text { Time in min } \\
& 9+30=39 \\
& \frac{1}{2} \cdot 5=\frac{5}{2} \text { mi walking }
\end{aligned}
$$

HISS 4CHI SFIISM MHEMAIICSLEAGUE
 O(IOBLR 2003
 ROI ND 4: FR (CTIONS \& MIXED NLMBERS
 YON-CALClLATOR

ANSWERS

d) -1
B) $-10 /-8 \rightarrow 3 / 5$
C) $-111 / 44$
B) $h_{a(b-1)}^{1} \frac{1}{h(a \quad 1)}-\overline{(a \cdot 1 \mu b+1)}$ what is the value of ${ }^{1} \quad 1$?

$$
\begin{aligned}
& 1(a+1)+a(b+1)=a b \quad 50 \frac{1}{r}+\frac{1}{b}=\frac{b+a}{\leq a}=-1 \\
& -b+b+a b+a=a! \\
& \vdots+a=-b a \\
& \frac{b+a}{b c}=-1
\end{aligned}
$$

B) The numerator of a fraction is two less than the denominator When both the numerator and the denominator are increased by five, the result is $4 / 3$ of the onginal fraction What was the criginal fraction?

$$
\begin{array}{lr}
\frac{x-2}{x}=\text { orig fract } \quad \frac{x+3}{x+5}=\frac{4(x-2)}{3 x} \quad(x+8)(x-5)=0 \\
3 x(x+3)=(4 x-8)(x+5) & x=-8, x=5 \\
3 x^{2}+9 x=4 x^{2}+12 x-40 & \text { ANS } \frac{-10}{-8}, \frac{3}{5}
\end{array}
$$

$$
\begin{array}{lll}
x-3 y & \frac{14}{3} & 3 x-9 y=14 x+28 y \\
x+3 y & -11 x=37 y
\end{array}
$$

$$
\frac{x}{y}=-\frac{37}{11}, \quad \frac{3 x}{4 y}=-\frac{111}{44}
$$

OC TOBER 2003

ROI ND 5: INEQUALITIES \& ABSOIUIE VALUES

ANSWIRS

B) $-1, \ldots, 6$
C) $x=1 / 8, x-1, ;$

$$
\begin{aligned}
& y^{3}-5 x^{2}-24 x=0 \\
& \text { Mry } \times-3, \quad 0<\bar{x} \text { ? } \\
& x(x+3)(x-8)<0
\end{aligned}
$$

B) Solve for : $|t-2 x|=x^{2}-3 x+2$

$$
\begin{array}{ll}
1 / 1+x^{2} 4-2 x=x^{2}-3 x+2 \\
x^{2}-x-2=0 & 2 x-4-x^{2} 3 x+2 \\
(x+1)(x-2)=0 & 0=x^{2}-5 x+6 \\
x=-1, x=2 & x=6 x+2 \text { or } 3 \\
x+1+3
\end{array}
$$

C) Solve for $x \frac{1}{x^{2}}-\frac{5}{x}<24$

$$
\begin{aligned}
& \frac{1}{3}-\frac{5}{x}-14<0 \quad \text { Ars } x>\frac{1}{1}, x<-\frac{1}{3} \\
& -24 x^{2}-5 x+1<0 \\
& 24 x^{2}+(-1>0 \\
& (8 x-1)(3 x+1)>0
\end{aligned}
$$

 O（ LOBAR 2003
 RO（IND 6：I 11 141 IO）

1しくいIRく
1） 2
B）f
（） 16

B）It $x+v \quad 7$ and $x \quad=3$ what is the value of $3 ?$

$$
\begin{aligned}
& x-y-3 \quad 3^{2(5)-3(2)}=3^{10-6}=2^{4}=81 \\
& 2 x=10 \\
& x=5 \\
& 2 y-4 \\
& y-2
\end{aligned}
$$

C）Find the value of $(234567891)(234567891)-(234567895)(234567887)$

$$
(x)(x)-(x+4)(x-4)
$$

A）$(-8(0,2,2)$
D）${ }^{2},-1 / 1$
B） $13 \sqrt{13}$
E）$x<1 / 2, x>1$ ，
C）Tx cents
F）$\quad 4$

1）In ice cream cone has the shape of a square pyramid of height ${ }^{5}$ inches where the side or the square base is 4 inches A sphencal scoop of ice cream of diameter 4 inches is placed in the cone If the ice cream were allowed to melt the volume of ice cream that would overflow the cone is $1 \quad h \pi$

$$
\text { f,., the } \because \text { want in } h_{1}
$$

B）In rectangle $A B C D E$ is on diagonal $A C$ so that $A F \quad A D \quad F C=23+$ and $B C-30$ Calculate EB in simplified radical form

C）Jon has a number of cons in his pocket Eleven of them are nickels one－serenth are dimes． and one－third are pennis What is the total value of Jon＇s cons？

D）Solve for $x\left(\frac{x+3}{x-1}\right)^{2}-6=\frac{x-3}{x-1} \quad \frac{x+3}{x-1}=3, x+3=3 x-3,2 x=6, x=3$ $\left(\frac{x+3}{x-1}-3\right)\left(\frac{x+3}{x-1}+2\right)=0 \quad \begin{aligned} & x-1 \\ & \frac{x+3}{x-1}=-2, x+3=-2 x+2,3 x=-1, x=-\frac{1}{3}\end{aligned}$
E）Solve for $\left(\begin{array}{ll}\frac{1}{x} & \frac{1}{2}\end{array}\right) \quad \frac{1}{x} 2^{2}-20(x+1)-(x+1)(x-2)-2(x-1<0$ maris $\left(x_{2}-2\right)^{2}$ To geT note：$(x-2)^{2}>0$

$$
2 x^{2}-11 x+5>0 \quad(2 x-1)(x-5)>0
$$

$$
\text { Ans } x<1 / 2 \text { or } x>5
$$

F）Given $x^{*} y=2 x-3 y$ ，solve the equation $\left(3^{*} a\right)^{*}\left(a^{*} 3\right)=24^{*} 13$ for a
$2(6+3 a)+3(2 a+9)=48+39=87,12 a+39=87, a=4$

$$
\begin{aligned}
& x=4 \operatorname{coins} \frac{1}{7} x+\frac{1}{3} x+11=x, \quad \frac{10 x}{21}+11=x, \quad \frac{11 x}{21}=11, x=21 \\
& \text { Akatls-55申, Dimes-30申, Pennis - pk Ans } 92 \text { cants }
\end{aligned}
$$

