MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2004 ROUND 1: ALGEBRAIC FUNCTIONS

ANSWERS

A)
B)
C) \qquad
A) If $f(x)=-2 x^{2}+7 x-3$, calculate $f(3+h)-f(3-h)$ in terms of h.
B) If $f(x)=x+5$ and $g(x)=x^{2}$, solve the equation $f(g(2-a))=g(f(a-3)$ for a.
C) If $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-2$, solve the equation $f^{-1}\left(f^{-1}(w)\right)=f\left(g^{-1}(w)\right)$ for w.

MASSACHUSETTS MATHEMATICS LEAGUE
 FEBRUARY 2004 ROUND 2: NUMBER THEORY

ANSWERS

A) \qquad
B)
C)
A) Given $(A B A)_{9}=(B B 0)_{11}$ where 0 is zero, and A and B are distinct natural numbers. Determine both possible values of A and B. Write the answers in the form (A, B).
B) Determine the units digit for the sum of $7^{2003}+9^{2003}$.
C) How many positive even integers are divisors of $\left(12^{3}\right)\left(18^{4}\right)$?

MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2004
 ROUND 3: TRIG. IDENTITIES OR INVERSES

ANSWERS

A) \qquad
B)
C) \qquad
A) Simplify $\frac{(\cot \theta-\cos \theta)(1+\sin \theta)}{\cos ^{3} \theta}$ to the form $T(\theta)$ where T is one of the six trig functions.
B) For $0^{\circ} \leq \theta<360^{\circ}$, solve $\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{\sqrt{3}}{2}$.
C) Using principle values, express $\cos \left(\sec ^{-1} \frac{3}{2}-\cos ^{-1} \frac{1}{5}\right)$ in simple radical form.

MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2004

 ROUND 4: WORD PROBLEMS

 ROUND 4: WORD PROBLEMS}

ANSWERS

A)

B)
C)
A) What is the larger of the two numbers whose sum is ten, if the sum of their reciprocals is $8 / 15$.
B) An elevator went from the bottom of a tower to the top at a speed of 4 meters/second. It remained at the top for ninety seconds, and then returned to the bottom at a speed of $5 \mathrm{~m} / \mathrm{sec}$. If the total trip took 45 minutes, how high is the tower?
C) The sum of the squares of three peritive odd integers is 967 more than the sum of the squares of the two even integers between them. Calculate the sum of the five consecutive integers.

MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2004
 ROUND 5: GEOMETRY CIRCLES NON-CALCULATOR

ANSWERS
A) \qquad
B) \qquad
C) \qquad
A) Three circles of areas $\pi, 4 \pi$, and 9π are drawn tangent to each other. Calculate the area of the triangle formed by connecting the centers of the three circles.

B) In the figure, $\overline{A C}$ is a diameter of circle $\mathrm{O}, \overparen{A B}=\frac{1}{2} \overparen{B C}, \mathrm{D}$ is the midpoint of $\overparen{A C}$. Find the value of $\mathrm{BC} / \mathrm{AD}$ in simplified radical form.

C) In circle $\mathrm{O}, \overline{C D} \perp \overline{A B}, \mathrm{CE}=5, \mathrm{CD}=14$, and the ratio of AE to AB is 1 to 6 . The area of circle O is $k \pi$. What is the value of k ?

MASSACHUSETTS MATHEMATICS LEAGUE
 FEBRUARY 2004
 ROUND 6: SEQUENCES \& SERIES

ANSWERS

A)
B)
C)
A) In an arithmetic sequence of ten terms, the tenth term is 14 , and their sum is 5 . Find the second term.
B) The second term of a geometric sequence is 12 , and the sixth term is $1024 / 27$. Find the first term.
C) The six terms $2 x-3, t, 7-12 y, x+3,3 y-4, x+12$ are in arithmetic sequence. Find the ordered triple (x, y, t).

MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2004
 ROUND 7: TEAM QUESTIONS

ANSWERS

A) \qquad D) \qquad
B) \qquad E) \qquad
C) F)
A) If $f(x)=2 x^{2}-17 x+24$ and $f(x+a)=2 x^{2}-5 x-9$, calculate the value of a.
B) Determine the $142^{\text {nd }}$ positive integer divisible by three or five.
C) Express $\cos ^{2} \frac{7 \pi}{24}-\sin ^{2} \frac{7 \pi}{24}$ in simplified radical form.
D) The hundred's digit of a three-digit number is one more than twice the units digit, and the tens digit is three less than the units digit. If the digits were reversed, the number obtained would be 396 less than the original number. Find the original number.
E) In the figure, $\mathrm{AC}=9, \mathrm{GC}=6, \mathrm{GE}=3$, and $\mathrm{AD}=\mathrm{DG}=\mathrm{GF}$. Find BC . (not To scale)

F) An infinite geometric series has a sum of 54 while the sum of the first three terms is 52 .

What is the first term?

FEBRUARY 2004
ROUND 1: ALGEBRAIC FUNCTIONS
ANSWERS
A) -10 h
в) $5 / 8$
C) $-37 / 5$
A) If $\mathrm{f}(\mathrm{x})=-2 x^{2}+7 x-3$, calculate $\mathrm{f}(3+\mathrm{h})-\mathrm{f}(3-\mathrm{h})$ in terms of h .

$$
\begin{aligned}
& {\left[-2\left(9+6 h+h^{2}\right)+7(3+h)-3\right]-\left[-2\left(9-6 h+h^{2}\right)+7(3-h)-3\right] } \\
= & {\left[-18-12 h-2 h^{2}+21+7 h-3\right]-\left[-18+12 h-2 h^{2}+21-7 h-3\right] } \\
= & \left(-5 h-2 h^{2}\right)-\left(5 h-2 h^{2}\right)=-10 h
\end{aligned}
$$

B) If $f(x)=x+5$ and $g(x)=x^{2}$, solve the equation $f(g(2-a))=g(f(a-3)$ for a.

$$
\begin{gathered}
f\left[(2-a)^{2}\right]=g[(a-3)+5],(2-a)^{2}+5=(a+2)^{2} \\
4-4 a+a^{2}+5=a^{2}+4 a+4 \\
5=8 a \\
a=5 / 8
\end{gathered}
$$

C) If $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-2$, solve the equation $f^{-1}\left(f^{-1}(w)\right)=f\left(g^{-1}(w)\right)$ for w.

$$
\begin{aligned}
& f^{-1}(x)=\frac{x-1}{2}, g^{-1}(x)=\frac{x+2}{3} \\
& \frac{\left(\frac{w-1}{2}\right)-1}{2}=2\left(\frac{w+2}{3}\right)+1, \quad \frac{w-1-2}{4}=\frac{2 w+4+3}{3}, \\
& \begin{aligned}
\frac{w-3}{4}=\frac{2 w+7}{3}, \quad 3 w-9 & =8 w+28 \\
-37 & =5 w, w=-37 / 5
\end{aligned}
\end{aligned}
$$

MASSACHUSETTS MATHEMATICS LEAGUE

ROUND 2: NUMBER THEORY
ANSWERS
A) $(3,2),(6,4)$
B) 2
C) 120
A) Given $(A B A)_{9}=(B B 0)_{11}$ where 0 is zero, and A and B are distinct natural numbers. Determine both possible values of A and B . Write the answers in the form (A, B).

$$
\begin{aligned}
& 81 A+9 B+A=121 B+11 B \\
& 82 A=132 B-9 B=123 B \\
& 2 A=3 B, \quad A=3, B=2 \text { or } A=6, B=4
\end{aligned}
$$

B) Determine the units digit of $7^{2003}+9^{2003}$.

7^{2}	1
7^{1}	7
7^{2}	9
7^{3}	3
7^{4}	1

9^{c}	1
9^{\prime}	9
9^{2}	1

$$
4 \longdiv { 2 0 0 3 } \quad R = 3 \quad 3 + 9 = 1 2
$$

$$
2 \longdiv { 2 0 0 3 } \quad R = 1
$$

C) How many positive even divisors does $\left(12^{3}\right)\left(18^{4}\right)$ have?

$$
\begin{aligned}
& \left(2^{2} \cdot 3\right)^{3}\left(2 \cdot 3^{2}\right)^{4}=2^{6} \cdot 3^{3} \cdot 2^{4} \cdot 3^{8}=2^{10} \cdot 3^{11} \\
& A \text { divisors }=(10+1)(11+1)=11(12)=132
\end{aligned}
$$

Ans 132 -odd divisors $=132-12=120$

MASSACHUSETTS MATHEMATICS LEAGUE
 FEBRUARY 2004
 ROUND 3: TRIG. IDENTITIES OR INVERSES

ANSWERS

A) $\csc \theta$
в) $30^{\circ}, 60^{\circ}, 210^{\circ}, 240^{\circ}$
C) $(2+2 \sqrt{30}) / 15$
A) Simplify $\frac{(\cot \theta-\cos \theta)(1+\sin \theta)}{\cos ^{3} \theta}$ to the form $T(\theta)$ where T is one of the six trig functions.

$$
\left.\begin{array}{l}
\left(\frac{\cos \theta}{\sin \theta}-\cos \theta\right)(1+\sin \theta) \\
\cos ^{3} \theta
\end{array} \frac{(\cos \theta-\sin \theta \cos \theta)(1+\sin \theta)}{\sin \theta \cos ^{3} \theta}\right)=\frac{\cos \theta\left(1-\sin ^{2} \theta\right)}{\sin \theta \cos ^{3} \theta}=\frac{1}{\sin \theta}=\csc \theta \quad l
$$

B) For $0^{\circ} \leq \theta<360^{\circ}$, solve $\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{\sqrt{3}}{2}$.

$$
\begin{aligned}
& \frac{\frac{2 \sin \theta}{\cos \theta}}{\sec ^{2} \theta}=\frac{2 \sin \theta}{\cos \theta} \cdot \frac{\cos ^{2} \theta}{1}=2 \sin \theta \cos \theta=\sin 2 \theta=\frac{\sqrt{3}}{2} \\
& 2 \theta=60^{\circ} ; 120^{\circ}, 420^{\circ}, 480^{\circ} \\
& \theta=30^{\circ}, 60^{\circ} ; 210^{\circ}, 240^{\circ}
\end{aligned}
$$

C) Using principle values, express $\cos \left(\sec ^{-1} \frac{3}{2}-\cos ^{-1} \frac{1}{5}\right)$ in simple radical form.

$\cos A \cos B+\sin A \sin B=$
$\frac{2}{3} \cdot \frac{1}{5}+\frac{\sqrt{5}}{3} \cdot \frac{2 \sqrt{6}}{5}=\frac{2+2 \sqrt{30}}{15}$

MASSACHUSETTS MATHEMATICS LEAGUE
 FEBRUARY 2004
 ROUND 4: WORD PROBLEMS

ANSWERS
A) $15 / 2$
в) 400
C) ± 155
A) What is the larger of the two numbers whose sum is ten, if the sum of their reciprocals is $8 / 15$.

$$
\begin{aligned}
& x, 10-x \quad \frac{1}{x}+\frac{1}{10-x}=\frac{8}{15} \\
& 15(10-x)+15 x=8\left(10 x-x^{2}\right) \\
& 150=80 x-8 x^{2}, 8 x^{2}-80 x+150=0 \\
& 4 x^{2}-40 x+75=0(2 x-5)(2 x-15)=0 \quad x=\frac{5}{2}, \frac{15}{2} \text { Ax /5 } 15 / 2
\end{aligned}
$$

B) An elevator went from the bottom of a tower to the top at a speed of 4 meters $/$ second. It remained at the top for ninety. seconds, and then returned to the bottom at a speed of $5 \mathrm{~m} / \mathrm{sec}$. If the total trip took 4.5 minutes, how high is the tower?

$$
\begin{aligned}
& x=\ln \text { of elevator } \cdot \frac{x}{4}+90+\frac{x}{5}=270, \frac{x}{4}+\frac{x}{5}=180 \\
& 5 x+4 x=180.20 \\
& \frac{9 x}{9}=\frac{180.20}{9}, x=20.20=400
\end{aligned}
$$

C) The sum of the squares of three positive odd integers is 967 more than the sum of the squares of the two even integers between them. Calculate the sum of the five consecutive integers. $\quad x, x+2, x+4$

$$
\begin{aligned}
& x^{2}+(x+2)^{2}+(x+4)^{2}=967+(x+1)^{2}+(x+3)^{2} \\
& x^{2}+4 x+4+8 x+16=967+2 x+1+6 x+9 \\
& x^{2}+12 x+20=8 x+977, x^{2}+4 x-957=0 \\
& \begin{array}{l}
x+33)(x-29)=0, x=29, x+1=30, x+2=31, x+3=32, x+4=33 \\
\text { OR } x=-33 \rightarrow-155
\end{array} \\
& \text { (1N5士155 }
\end{aligned}
$$

MASSACHUSETTS MATHEMATICS LEAGUE
 FEBRUARY 2004
 ROUND 5: GEOMETRY CIRCLES NON-CALCULATOR

ANSWERS
A) 6
B) $\sqrt{6} / 2$
C) 85
A) Three circles of areas $\pi, 4 \pi$, and 9π are drawn tangent to each other. Calculate the area of the triangle formed by connecting the centers of the three circles.

$3,4,5 \Delta$, area $=\frac{1}{2}, 3.4=6$
B) In the figure, $\overline{A C}$ is a diameter of circle $\mathrm{O}, \overparen{A B}=\frac{1}{2} \overparen{B C}$, D is the midpoint of $\overparen{A C}$. Find the ratio of BC to AD in simplified radical form.

$$
\begin{aligned}
& \operatorname{LeT} O A=O C=1, \text { Then } A B=1, B C=\sqrt{3}, \\
& A D=\sqrt{2} \cdot B C / A D=\sqrt{3} / \sqrt{2}=\sqrt{6} / 2
\end{aligned}
$$

C) In circle $\mathrm{O}, \overline{C D} \perp \overline{A B}, \mathrm{CE}=5, \mathrm{CD}=14$, and the ratio of AE to AB is 1 to 6 . The area of circle O is $k \pi$. What is the value of k ?

$$
\begin{aligned}
& G E=2, A F=x, E B=5 x, 5 x^{2}=45, x=3, \\
& E B=15, E F=6, F B=9, O F=G E=2 \\
& O B^{2}=2^{2}+9^{2}=85=1
\end{aligned}
$$

MASSACHUSETTS MATHEMATICS LEAGUE
 FEBRUARY 2004
 ROUND 6: SEQUENCES \& SERIES

ANSWERS

A) -10
в) ± 9
C) $\left(-\frac{15}{2}, \frac{4}{3},-\frac{37}{2}\right)$
A) In an arithmetic sequence of ten terms, the tenth term is 14 , and their sum is 5 . Find the second

$$
\begin{aligned}
a_{1}+9 d=14, \quad 5\left(2 a_{1}+9 d\right)=5 \text { so } \quad a_{1}+9 d & =14 \\
2 a_{1}+9 d & =1 \quad a_{1}=-13
\end{aligned}
$$

$$
-13+9 d=14, \quad 9 d=27, d=3
$$

$$
a_{2}=a_{1}+d=-13+3=-10
$$

B) The second term of a geometric sequence is 12 , and the sixth term is $1024 / 27$. Find the first term.

$$
\begin{aligned}
& 12 r^{4}=\frac{1024}{27}, r^{4}=\frac{1024}{12 \cdot 27}=\frac{256}{81}, r= \pm \frac{4}{3} \\
& a_{1}=\frac{a_{2}}{r}=\frac{12}{ \pm \frac{4}{3}}= \pm \frac{12}{1}, \frac{3}{4}= \pm 9
\end{aligned}
$$

C) The six terms $2 x-3, t, 7-12 y, x+3,3 y-4, x+12$ are in arithmetic sequence. Find the ordered triple $(\mathrm{x}, \mathrm{y}, \mathrm{t})$.
$(x+12)-(x+3)=9=2 d, d=\frac{9}{2} \cdot(3 y-4)-(7-12 y)=9$
$15 y-11=9,15 y=20, y=\frac{20}{15}=\frac{4}{3}, a_{3}=7-12 y=7-\frac{12}{1} \cdot \frac{4}{3}=$
$7-16=-9 \leftarrow a_{2}=a_{3}-d=-9-\frac{9}{2}=-\frac{27}{2}, a_{4}=x+3=a_{3}+d=$
$-9+\frac{9}{2}=-\frac{9}{2}$ so $x+3=-\frac{9}{2}$ and $x=-3-\frac{9}{2}=-\frac{6-9}{2}=-\frac{15}{2}$.
ANS $(x, y, \tau)=\left(-\frac{15}{2}, \frac{4}{3},-\frac{27}{2}\right)$

MASSACHUSETTS MATHEMATICS LEAGUE
 FEBRUARY 2004
 ROUND 7: TEAM QUESTIONS

ANSWERS

A) 3
D) 703
в) 305
E) 3
C) $(\sqrt{2}-\sqrt{6}) / 4$
F) 36
A) If $\mathrm{f}(\mathrm{x})=2 x^{2}-17 x+24$ and $\mathrm{f}(\mathrm{x}+\mathrm{a})=2 x^{2}-5 x-9$, calculate the value of a .
$2(x+a)^{2}-17(x+a)+24=2 x^{2}-5 x-9$
$2\left(x^{2}+2 x a+a^{2}\right)-17(x+a)+24$ so $4 a=17=-5, \quad a=3$
B) Determine the $142^{\text {nd }}$ positive integer divisible by three or five.

300 ks The louth du by 3, and The Goth div by 5, but The Lo th du by 15 . So 300 is the $100+60-20=140$ Th du by 3 ar s.
C) Express $\cos ^{2} \frac{7 \pi}{24}-\sin ^{2} \frac{7 \pi}{24}$ in simple radical form,

$$
=\cos \frac{7 \pi}{12}=\cos 105^{\circ}=\cos \left(60^{\circ}+45^{\circ}\right)=\frac{1}{2} \frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}=\frac{\sqrt{2}-\sqrt{6}}{4}
$$

D) The hundred's digit of a three-digit number is one more than twice the units digit, and the tens digit is three less than the units digit. If the digits were reversed, the number obtained would be 396 less than the original number. Find the original number.

$$
\begin{array}{ll}
h=2 u+1, T=u-3,100(2 u+1)+10(u-3)+u=100 u+10(u-3) \\
200 u+100+u=102 u+397 & \\
& +(2 u+1)+396 \\
99 u=297, u=3 ; T=0, h=7
\end{array}
$$

E) In the figure, $\mathrm{AC}=9, \mathrm{GC}=6, \mathrm{GE}=3$, and $\mathrm{AD}=\mathrm{DG}=\mathrm{GF}$. Find BC .

$$
x^{2}=3 \cdot 6=18, x=3 \sqrt{2}
$$

$$
9(9-y)=3 \sqrt{2}(9 \sqrt{2})=54
$$

$$
9-y=6, y=3
$$

F) An infinite geometric series has a sum of 54 while the sum of the first three terms is 52 .

$$
\begin{aligned}
& \text { What is the first term? } \\
& \begin{array}{l}
\frac{a}{1-r}=54, \quad a+a r+a r^{2}=52, \quad 5054(1-r)\left(1+r 4 r^{2}\right)=52 \\
54\left(1-r^{3}\right)=52, \quad 54 r^{3}=2, \quad r^{3}=\frac{1}{27}, r=\frac{1}{3}, a=\frac{54}{1}, \frac{2}{3}=36
\end{array}
\end{aligned}
$$

