MASSACHUSETTS MATHEMATICS LEAGUE NOVEMBER 2004 ROUND 1 COMPLEX NUMBERS

ANSWERS
A)
B)
C)_(,)

A) Find the exact value of xy if $(2 + i)^3 = 6x + 5yi$ with x and y real numbers

B) For a complex number z and its conjugate \overline{z} with |z| = c, $\frac{25}{z} + \frac{\overline{z}}{c^2} = 3 - 2i$. Express z in a+bi form

C) Find all complex numbers x satisfying $x^2 = -2 + 8 i \sqrt{3}$. Express answers in a + bi form.

MASSACHUSETTS MATHEMATICS LEA NOVEMBER 2004 ROUND 2 ALGEBRA 1 ANYTHING	GUE
	ANSWERS
	A)
	B)
	C)

A) A total of \$8000 is invested in two mutual funds. At year's end one has paid 4%, the other 5% annual interest. If the combined interest after one year is \$350, how much was invested in the fund paying 4% interest?

Solve for x in terms of R:
$$R = \frac{1}{x} + \frac{1}{R}$$

C) Find the area of the triangle whose vertices are (1,2) (3,9) and (6,5)

MASSACHUSETTS MATHEMATICS LEA	GUE
NOVEMBER 2004	
ROUND 3 GEOMETRY: AREA	
	ANSWERS
	A)

B)
C)

- A) The largest square that fits in a 2 by 3 rectangle is one with area 178. Find the area of the 2 by 3 rectangle.
- B) If a regular octagon of side x is inscribed in a square of side 1 as shown below, find x in simplified radical form.

C) Given right triangles ABC and BCD below with $\angle A=45^{\circ}$, $\angle D=30^{\circ}$, and DE=12, find the area of triangle BCE in simplest radical form.

MASSACHUSETTS MATHEMATICS LEAGUE NOVEMBER 2004 ROUND 4 FACTORING

	ANSWERS
	A)
	B)
	C)

A) Factor completely: $56x^2 - 78x - 108$

B) Factor completely 3xy - 20zw - 15xz + 4yw

C) Factor completely: $a^2 + 6b^2 - 12c^2 - ac - bc - 5ab$

	MASSACHUSETTS MATHEMATICS LEAGUE NOVEMBER 2004 ROUND 5 TRIG: FUNCTIONS OF 30, 45, 60 & 90	
**	**** NO CALCULATORS ON THIS ROUND ****	
	ANSWERS	
	A)	
	B)	
	C)	

A) Find the exact value in simplified radical form of:

 $\csc(-675^\circ) + \cos(120^\circ) + 2\sin^2(420^\circ) - \tan^2(-330^\circ) + \cot^2(780^\circ)$

B) Solve for all x, $0^{\circ} \le x < 360^{\circ}$: $\sin(2x) - \sin(-x) = 0$

C) In the figure below, find the value of DH in simplified radical form if:

 $sin(\angle FDH) = cos(\angle A) = cos(\angle ACB) = 0.5$, CF = FD, $AB = 10\sqrt{3}$, $cot(\angle CFD) = cos(\angle CBD) = cot(\angle H) = 0$, and $cot(\angle BDH) = -1$

MASSACHUSETTS MATHEMATICS LI NOVEMBER 2004 ROUND 6 PLANE GEOMETRY: ANG	EAGUE Gles
	ANSWERS
	A)
	B)::
	C)

- A) Given ABCD an isosceles trapezoid with diagonal \overline{AC} . If $m \angle B = 2x 5$, $m \angle D = 3x$ and $m \angle ACD = x$, find $m \angle DAC$.
- B) Find the ratio of a to b expressed as a simplified ratio:

C) The ratio of 2 angles' measures is 4:7 while the ratio of the complement of the smaller angle to the supplement of the larger angle is 7:16. Find the sum of the measures of the two angles.