MASSACHUSETTS MATHEMATICS LEAGUE NOVEMBER 2005 ROUND 1 COMPLEX NUMBERS

 ANSWERSA) \qquad
B) C)
A) If $x=a+b i$ for real a and b and if $x^{2}=i$ find the product $a b$.
B) Simplify $\left(i^{9}-5 i^{6}-3 i^{8}+7 i^{11}\right)^{2}$ as much as possible.
C) Express in simplest form

$$
(\sqrt{-6}-\sqrt{-2})^{2}+\frac{16 i}{1+\sqrt{-3}}-\left(\frac{4}{\sqrt{-2}}\right)^{2}
$$

MASSACHUSETTS MATHEMATICS LEAGUE
 NOVEMBER 2005

ROUND 2 ALGEBRA 1 ANYTHING

ANSWERS
A) $\$$ \qquad
B) \qquad
C)
A) The Arts Fund raised money by investing part of $\$ \mathbf{3 0 , 0 0 0}$ in stocks paying $\mathbf{9 \%}$ annual interest and the rest in safer bonds paying 8% annual interest. How much was invested in bonds if they made $\$ 2,500$ in interest in one year?
B) The pattern below is superimposed over five dates on a monthly calendar. The total of dates covered is 70; A covers a Thursday date. Determine the ordered pair (p, q) where p denotes the center date (covered by C) and q is the day of the week (SUN MON TUE WED THU FRI SAT) on which the first of the month falls.

C) The sum of the digits of a 3-digit number is 14 . The ten's digits is four less than the sum of the other 2 digits. If the ten's digit and unit's digit are interchanged the number's value is decreased by 18 . Find the number.

MASSACHUSETTS MATHEMATICS LEAGUE NOVEMBER 2005 ROUND 3 GEOMETRY: AREA

ANSWERS
A) \qquad
B) \qquad
C)
A) Square $A B C D$ has area 400. Its diagonals intersect at E. Find the exact perimeter of triangle ABE .
B) Rectangle SROH has $\mathrm{SR}=40$ and $\mathrm{SH}=30$. Point E is on $\overline{R H}$ so that $\overline{S E} \perp \overline{R H}$ Find the area of concave pentagon SHORE.
C) The area of a kite is 168 . The shorter diagonal is the axis of symmetry; the other diagonal has length 24 . If the kite has integral sides, find its perimeter.

MASSACHUSETTS MATHEMATICS LEAGUE NOVEMBER 2005 ROUND 4 FACTORING

ANSWERS

A)
B)
C)
A) Given n is a positive integer and $\mathrm{x}^{2}+\mathrm{nx}-50$ is factorable. Find the sum of all possible values of n.
B) Factor completely over the integers: $6 x^{3}-6+3 x^{2}-12 x$
C) Factor completely over the integers: $\mathrm{x}^{2}\left(\mathrm{x}^{2}+\mathrm{x}+1\right)-\left(\mathrm{x}^{3}-25\right)$

MASSACHUSETTS MATHEMATICS LEAGUE

ROUND 5 TRIG: FUNCTIONS OF 30, 45, 60 \& 90
A) \qquad
B) \qquad
C) \qquad
A) Find the exact value in simplified radical form of:

$$
\sec \left(\frac{4 \pi}{3}\right)-2 \sin ^{2}\left(\frac{\pi}{12}\right)+\cot ^{2}\left(\frac{11 \pi}{6}\right)-2 \cos ^{2}\left(\frac{\pi}{12}\right)-2 \csc \left(\frac{\pi}{8}\right) \cos \left(\frac{3 \pi}{8}\right)
$$

B) Solve for all $x, 0^{\circ} \leq x<360^{\circ}$: $\quad \sin (2 x)-\sin (-x)=0$
C) In the figure below, find the value of DH in simplified radical form if:

$$
\begin{aligned}
& \sin (\angle \mathrm{FDH})=\cos (\angle \mathrm{A})=\cos (\angle \mathrm{ACB})=0.5, \quad \mathrm{CF}=\mathrm{FD}, \mathrm{AB}=10 \sqrt{3}, \\
& \cot (\angle \mathrm{CFD})=\cos (\angle \mathrm{CBD})=\cot (\angle \mathrm{H})=0, \text { and } \cot (\angle \mathrm{BDH})=-1
\end{aligned}
$$

MASSACHUSETTS MATHEMATICS LEAGUE NOVEMBER 2005
 ROUND 6 PLANE GEOMETRY: ANGLES

ANSWERS
A)
B) \qquad
C)
A) Given $W X Y Z$ a trapezoid with legs $W X=8$ and $Y Z=6 . W Z: X Y=9: 5$. The bisectors of $\angle \mathrm{W}$ and $\angle \mathrm{Z}$ happen to intersect on $\overline{X Y}$ Find WZ .
B) Each angle of an equilateral triangle is divided into 4 equal angles as shown. Find the sum of the measures of $\angle \mathrm{ADF}, \angle \mathrm{AEH}, \angle \mathrm{FGC}$, and $\angle \mathrm{AFD}$.

C) If $P_{1} P_{2} P_{3} \ldots P_{n}$ are the vertices of a regular n-gon find in terms of n the measure of the acute angle formed by the intersection of $\mathrm{P}_{1} \mathrm{P}_{3}$ and $\mathrm{P}_{2} \mathrm{P}_{4}$

MASSACHUSETTS MATHEMATICS LEAGUE NOVEMBER 2005 ROUND 7: TEAM QUESTIONS

ANSWERS

A) \qquad D) \qquad by \qquad
B) \qquad E) \qquad
C) \qquad F) \qquad
A) If $(1+i)^{2006}=a+b i$ for real a and b, find the larger of a and b.
B) Given A, B, C, and D positive integer with $\mathrm{A}: \mathrm{B}=2: 3 \quad \mathrm{~B}: \mathrm{C}=5: 8$ and $\mathrm{C}: \mathrm{D}=20: 27$ express $\frac{A B}{B D+A D}$ as a simplified fraction.
C) A trapezoid has bases of 2 and 5 and legs of 1 and 3. Its area can be simplified to $\frac{a}{b} \sqrt{c}$ Find the sum $a+b+c$.
D) If a rectangle with side of length $3 x-4$ has an area of $12 x^{2}+14 x-40$ and a perimeter of 194 , find the dimensions of the rectangle.
E) A surveyor standing at a point on the ground so his eye is level with the bottom of a building measures the angle of elevation to the top of the building to be 60°. He backs up 30 meters and finds the angle of elevation has decreased by 15°. Find the exact height of the building in meters assuming the building is perpendicular to the ground.
F) $\quad \triangle \mathrm{ABC}$ is isosceles with base $\overline{B C}$ The bisector of $\angle \mathrm{ABC}$ intersects $\overline{A C}$ at D and intersects the bisector of the exterior angle from C at E . If $\triangle \mathrm{ADB}$ is also isosceles, find $m \angle B E C$.

MASSACHUSETTS MATHEMATICS LEAGUE NOVEMBER 2005 ANSWERS

A) $1 / 2$
B) $-32-24 i$
C) $4 i \quad 3+4$,

Round 2
A) $\$ 20,000$
B) $(14$, SAT $)$
C) 653

Round 3
A) $20+20 \sqrt{2}$
B) 816
C) 56

Round 4
A) $77 \quad$ B) $3(2 x+1)\left(x^{2}-2\right)$
C) $\left(x^{2}-3 x+5\right)\left(x^{2}+3 x+5\right)$

Round 5
A) -3
B) $120,180,240,360$
C) $5 \sqrt{6}$

Round 6
A) $126 / 5$ or 25.2
B) 240
C) $360 / n$

Team Round
A) 0
B) $\frac{5}{27}$
C) 54
D) 35 by 62
E) $15 \sqrt{3}$
$+45$
F) 18°

MASSACHUSETTS MATHEMATICS LEAGUE NOVEMBER 2005 BRIEF SOLUTIONS

Round One:

A. $(a+b i)^{2}=a^{2}-b^{2}+2 a b i=0+1 i$ so $2 \mathrm{ab}=1$.
B. $(i+5-3-7 i)^{2}=4-24 i-36=-32-24 i$
C. $-6-2 \sqrt{12}-2+\frac{16 i(1-i \sqrt{3})}{1-(-3)}-(-8)=-4 \sqrt{3}+\frac{16 i+16 \sqrt{3}}{4}=4 i$

Round Two:

A. $\mathrm{a}+\mathrm{b}=30000 ; 0.09 \mathrm{a}+0.08 \mathrm{~b}=350$ so $\mathrm{a}=\$ 10,000$ and $\mathrm{a}=\$ \mathbf{2 0 , 0 0 0}$
B. C is the average of A and E and also of B and D so sum $=5 C$ so $p=14$ so Saturday was day 15 and 8 and 1.
C. $H+T+U=14 ; H+U=T+4$; subtract. $T=10-T$ so $T=5 . H+50+U-(H+10 U+5)=18$ so $\mathrm{U}=3$.

Round Three:

A. Side is 20 , diagonal is $20 \sqrt{2}$.
B. \triangle SER $\sim \Delta$ HSR ratio 4:5. Area \triangle SER is $16 / 25$ of $\triangle H S R=384$. Subtract from 1200.
C. Area implies other diagonal is 14 . Thus $12^{2}+x^{2}=a^{2}$ while $12^{2}+(14-x)^{2}=b^{2}$, Integer solutions suggest 9-12-15 and 5-12-13 triangles ($14=9+5$)

Round Four:

A. n is the difference of factors of 50 so $\mathrm{a}=50-1$ or $25-2$ or $10-5$.
B. $3\left(2 x^{3}+x^{2}-4 x-2\right)=3\left[x^{2}(2 x+1)-2(2 x+1)\right]=\mathbf{3}(2 x+1)\left(x^{2}-2\right)$
C. Simplify to $x^{4}+x^{2}+25=x^{4}+10 x^{2}+25-9 x^{2}=\left(x^{2}+5\right)^{2}-(3 x)^{2}$ etc.

Round Five:
A. $(-2)-2\left(\sin ^{2} \frac{\pi}{12}+\cos ^{2} \frac{\pi}{12}\right)+(-\sqrt{3})^{2}-2(1)=-3$
B. $2 \sin x \cos x+\sin x=\sin x(2 \cos x+1)$ so $\sin x=0$ or $\cos x=-0.5$ thus $x=180$. 360 or 120,240
C. ABC equilateral so $\mathrm{BC}=10 \sqrt{3} . \mathrm{BCD} 30-60-90$ so $\mathrm{CD}=20$. CFD isos rt so $\mathrm{FD}=10 \sqrt{2}$. $\mathrm{FDH} 30-60-90$ so $\mathrm{DH}=5 \sqrt{6}$

Round Six:

A. $\triangle \mathrm{WXV}$ and $\triangle \mathrm{ZYV}$ are isosceles so $\mathrm{XY}=6+8=14$ so $\mathrm{WZ}=(9 / 5) 14$.

B. $\angle \mathrm{AEH}=60, \angle \mathrm{FGC}=45, \angle \mathrm{ADF}=105, \angle \mathrm{AFD}=30$.
C. Drawing all such diagonals $\mathrm{P}_{\mathrm{j}} \mathrm{P}_{\mathrm{j}+2}$ creates vertices of a smaller regular n -gon whose exterior angles have measure $360 / \mathrm{n}$

Team Round:

A. $\left((1+i)^{2}\right)^{1003}=(2 i)^{1003}=2^{1003} i^{1003}=-2^{1003} i=0+-2^{1003} i$ so a $>\mathrm{b}$
B. Multiply all 3 eqtns: $A: D=200: 672=25: 81$. Multiply second and third eqtn gives $\mathrm{B}: \mathrm{D}=100: 216=25: 54(\mathrm{BD}+\mathrm{AD}) / \mathrm{AB}=\mathrm{D} / \mathrm{A}+\mathrm{D} / \mathrm{B}=54 / 25+81 / 25=135 / 25$ so reciprocal is $35 / 135=5 / 27$.
C. Draw hts from ends of shorter base, solve $x^{2}+h^{2}=1(3-x)^{2}+h^{2}=9$ so $x=1 / 6$ and $h=\frac{\sqrt{35}}{6}$ and area is $\frac{7}{12} \sqrt{35}$
D. Since $12 x^{2}+14 x-40=(3 x-4)(4 x+10)$ half the perimeter is $(3 x-4)+(4 x+10)=97$ so $x=13$ and dimensions are 35 by 62 .
E. $30+x=x \sqrt{3}$ so $x=\frac{30}{\sqrt{3}-1}=\frac{30(\sqrt{3}+1)}{3-1}=15 \sqrt{3}+15$ see left sketch

F. If $m \angle A=x m \angle A B D=x$ so angles $A B C$ and $B C A$ are each $2 x$ so $5 x=180 x=36$. $m \angle E B C=36, m \angle B C E=72+108 / 4=126$ so $m \angle B E C=18$. See above sketch

