# MASSACHUSETTS MATHEMATICS LEAGUE JANUARY 2006 <br> ROUND 1 ANALYTIC GEOMETRY ANYTHING <br> ANSWERS 

A)
B)
C)
A) Find the radius of the circle $x^{2}+y^{2}+2(y-x+3)=40$.
B) Given two perpendicular lines $\ell_{1}: a x+6 y=3 a$ and $\ell_{2}: 2 a x-3 y+a=0$ for some constant $a>0$, find the coordinates of the point of intersection of the two lines.
C) A parabola has $y+3=0$ as its axis of symmetry. The parabola intersects $2 x+y=1$ twice, once at the parabola's vertex and once at the line's y-intercept. Find the coordinates of the parabola's x -intercept.

# MASSACHUSETTS MATHEMATICS LEAGUE JANUARY 2006 <br> <br> ROUND 2 ALGEBRA ONE: FACTORING \& EQUATIONS <br> <br> ROUND 2 ALGEBRA ONE: FACTORING \& EQUATIONS ANSWERS 

A)
B) $\qquad$
C)
cm

## All Factoring Is Over The Polynomials With Integer Coefficients

A) Find the largest integer $g$ for which $2 x^{2}+g x-15$ will be factorable.
B) Find the greatest common factor of $12 x^{2}-42 x+18$ and $8 x^{2}+20 x-12$.
C) A rectangular hole is cut all the way through a cube leaving side borders of 5 cm each and front and back borders of 12 cm as shown. If creating the hole removes exactly half of the volume of the cube, find all possible lengths for the side of the original cube.

A) $\qquad$
B) $\qquad$。
C)
A) Find the sum of all $x, 0 \leq x<2 \pi$ for which $\sin (2 x)=\cos (x)$
B) Find all $x, 0^{\circ} \leq x<360^{\circ}$, for which $\frac{\tan (180-x)}{\sin x}=2$.
C) Find the exact sum of the five smallest positive solutions in radians to

$$
\sec ^{2}\left(\frac{x}{6}\right)+\sqrt{3} \tan \left(\frac{x}{6}\right)=\sqrt{3}+\tan \left(\frac{x}{6}\right)+1
$$

# MASSACHUSETTS MATHEMATICS LEAGUE <br> JANUARY 2006 <br> <br> ROUND 4 ALGEBRA TWO: QUADRATIC EQUATIONS <br> <br> ROUND 4 ALGEBRA TWO: QUADRATIC EQUATIONS <br> ANSWERS 

A)

C)
A) Find both real solutions for $x: \quad x^{2}+(x+1)^{2}=(x+2)^{2}$
B) Find all real values of $z$ if $2 z^{2}+y z+3=0$ and $2 y=y^{2}-35$
C) Shalomar owns several clothing stores. If she sells her sweaters at a price of $\$ 100$, her stores average 102 sales per month. Shalomar finds that for every $\$ 5.00$ she drops her price her stores sell on average 3 additional sweaters; each $\$ 5$ increase in price loses her three sales, however. What price will provide the greatest income for Shalomar?

# MASSACHUSETTS MATHEMATICS LEAGUE JANUARY 2006 <br> <br> ROUND 5 GEOMETRY: SIMILAR POLYGONS <br> <br> ROUND 5 GEOMETRY: SIMILAR POLYGONS ANSWERS 

A) $\qquad$ sq units
B) $\qquad$
C) $\qquad$
A) A 3-4-5 triangle is enlarged to make a similar triangle with hypotenuse 50 units long. What is the area of the enlarged triangle?
B) A right $\Delta$ has integer sides and one side has length 5 . A second $\Delta$ with a perimeter of 1 is similar to the first $\Delta$. Find the maximum possible difference between the areas of the two triangles. Express the answer as a simplified fraction $\frac{a}{b}$.
C) $A B C D E F$ is a regular hexagon of side $10 \mathrm{~cm} . M$ is the midpoint of $\overline{A B}$ and $N$ the midpoint of $\overline{C D} \cdot X$ is the intersection of $\overline{M E}$ and $\overline{N F}$. Find the exact length $M X$ in simplified radical form.

# MASSACHUSETTS MATHEMATICS LEAGUE <br> JANUARY 2006 <br> ROUND 6 ALGEBRA ONE: ANYTHING <br> ANSWERS 

A)
B)
C)
A) If $(a+b)^{2}$ is 12 more than $(a-b)^{2}$, find $a b$.
B) If $b=5 c-3$ and $c=5 d-3$ and $d=5 b-3$, find $c$.
C) If $14 p^{2}+15 q^{2}=41 p q$, find the sum of all possible values for $\frac{p}{q}$.

# MASSACHUSETTS MATHEMATICS LEAGUE <br> JANUARY 2006 <br> ROUND 7: TEAM QUESTIONS 

ANSWERS
A)
D) $\qquad$
B) $\qquad$
$\qquad$ $:$
C) $\qquad$ F) $\qquad$
A) An ellipse with foci at $(12,16)$ and $(12,9)$ passes through the origin. If $(w, 9)$ lies on the ellipse, find all possible values of $w$.
B) Factor $4(3 b+1)^{4}+3(3 b+1)^{2}+1$ over the polynomials with integer coefficients.
C) Find all pairs of complimentary angle measures $x$ and $y$ with $0<x<y$ such that $x$ is a solution to $2 \cos ^{2}(6 x)=\sin (12 x)$ and $y$ is a solution to $2 \sin (12 y)+2=\cos ^{2}(12 y)$ Give your answers as ordered pairs $(x, y)$.
D) The inner rectangle below is surrounded by two bands of the same uniform width. If the shaded region is one third the area of the largest rectangle and $A B D C$ is a 10 by 16 rectangle, what are both possible areas for the innermost rectangle?

E) In the above sketch on the right $A C D B \sim A B E F$ with $A C=D C=12$ and $A B=9$. Find the ratio of the area of $\triangle D F C$ to the area of $\triangle D A F$ as a simplified ratio of integers.
F) Sue and Bob each received money from Uncle Joe to buy mini music CDs; since they weren't the same age they got different amounts. SuperStore has a music club where you pay $\$ 15$ to join then pay $\$ 2$ per CD, while GrandSong charges just $\$ 5$ to join then $\$ 6$ per CD. Sue claimed her money would buy twice as many songs at one store than at the other and Bob claimed the same thing about his different amount of money! How much money did Uncle Joe send in total to Sue and Bob?

## MASSACHUSETTS MATHEMATICS LEAGUE JANUARY 2006 ANSWERS

Round 1:
A) 6
B) $(1 / 5,7 / 5)$ or $(0.2,1.4)$
C) $(3.5,0)$

Round 2
A) 29
B) $4 x-2$ or $2(2 x-1)$
C) 60 cm

Round 3
A) $3 \pi$
B) 120,240
C) $36.5 \pi$ or $73 \pi / 2$

Round 4
A) $3,-1$
B) $-3,-1 / 2,1,1.5$
C) $\$ 135$

Round 5
A) 600
B) $899 / 30$

C $3 \sqrt{13}$
Round 6
A) 3
B) $3 / 4$
C) $41 / 14$ or $2 \frac{13}{14}$

Team Round
A) $-4.8,16.8$
B) $\left(18 b^{2}+15 b+4\right)\left(18 b^{2}+9 b+2\right)$
C) $(7.5,82.5)$ and
$(37.5,52.5)$
D) 16 or 55
E) $7: 9$
F) $\$ 52.00$

## MASSACHUSETTS MATHEMATICS LEAGUE

## JANUARY 2006 BRIEF SOLUTIONS

## Round One:

A. $x^{2}-2 x+1+y^{2}+2 y+1+4=40$ so $(x-1)^{2}+(y+1)^{2}=36$ and $\mathrm{r}=6$.
B. Slopes are $-a / 6$ and $2 a / 3$ so $-2 a^{2} / 18=-1$.

Thus, $a=3$ Substitute and solve the system.
C. Intersection at $y=-3$ on line gives vertex as $(2,-3)$ so parabola is $x-2=a(y+3)^{2}$

Other intersection of $(0,1)$ gives $a=-1 / 8$. Substitute this and $y=0$.

## Round Two:

A. $(2 x-a)(x+b)$ maximizes $g$ when $b$ is maximum, $a$ minimum so $b=15, a=1$.
B. Factoring gives $6(2 x-1)(x-3)$ and $4(2 x-1)(x+3)$ common is $2(2 x-1)$
C. $1 / 2 x^{3}=x(x-24)(x-10)$ so $0=1 / 2 x^{3}-34 x^{2}+240=1 / 2 x\left(x^{2}-68 x+480\right)=$ $1 / 2 x(x-8)(x-60)$. Only $x=60$ gives a large enough cube.

## Round Three:

A. $2 \sin (x) \cos (x)=\cos (x)$ so $\cos (x)=0, x=\pi / 2,3 \pi / 2$, or $\sin (x)=1 / 2, x=\pi / 6,5 \pi / 6$
B. $\tan (180-x)=-\tan (x)$ and $-\tan (x) / \sin (x)=-1 / \cos (x)$ so $\cos (x)=-0.5$
C. $\tan ^{2}\left(\frac{x}{6}\right)+1+\sqrt{3} \tan \left(\frac{x}{6}\right)=\sqrt{3}+\tan \left(\frac{x}{6}\right)+1$ becomes $\tan ^{2}\left(\frac{x}{6}\right)+\sqrt{3} \tan \left(\frac{x}{6}\right)-\tan \left(\frac{x}{6}\right)-\sqrt{3}=0=\left(\tan \left(\frac{x}{6}\right)-1\right)\left(\tan \left(\frac{x}{6}\right)+\sqrt{3}\right)$ so $x / \sigma=\pi / 4+n \pi$ thus $x=3 \pi / 2+6 n \pi$ or $x / 6=2 \pi / 3+n \pi$ thus $x=4 \pi+6 n \pi$ and the first five positive solutions are $1.5 \pi, 4 \pi, 7.5 \pi, 10 \pi$, and $13.5 \pi$.

## Round Four:

A. $x^{2}+x^{2}+2 x+1=x^{2}+4 x+4$ so $x^{2}-2 x-3=0=(x-3)(x+1)$
B. Second equation gives $y=7$ or $y=-5.2 z^{2}+7 z+3=(2 z+1)(z+3)$ so $z=-0.5$ or $z=-3.2 z^{2}-5 z+3=(2 z-3)(z-1)$ so $z=1.5$ or $z=1$.
C. For $n$ increases of $\$ 5$, price is $100+5 n$ while sales is $102-3 n$. Zeroes are at $n:=-20$ and $n=34$, so vertex is at their average, $n=7$.

## Round Five:

A. The larger triangle is scaled by 10 so its area is scaled by 100 . The smaller triangle has area $0.5(3)(4)=6$.
B. $\Delta \# 1$ is 3-4-5 or 5-12-13. Max difference comes from 5-12-13 whose area and perimeter are both $30 . \Delta \# 2$ is $5 / 20,12 / 30,13 / 30$ and area is $1 / 30$.
C. $M N=15$ (midline) $\triangle M N X \sim \triangle E F X$ ratio 3:2 so $M X$ is $3 / 5$ of $M E$. $A E$ twice altitude of equil $\Delta \mathrm{w} /$ side $10=10 \sqrt{3}$ and $M E$ is hypotenuse of $\triangle A M E=\sqrt{300+25}=5 \sqrt{13}$, so $M X=3 \sqrt{13}$

## Round Six:

A. $a^{2}+2 a b+b^{2}=12+a^{2}-2 a b+b^{2}$ so $4 a b=12$ and $a b=3$.
B. By symmetry, $b=c=d$ so $c=5 d-3$ becomes $c=5 c-3$ and $c=3 / 4$.
C. $14 p^{2}-41 p q+15 q^{2}=(7 p-3 q)(2 p-5 q)$ so $7 p=3 q, p / q=3 / 7$ or $2 p=5 q$, $p^{\prime} q=5 / 2$. Sum is $41 / 14$.

## Team Round:

A. Origin is 15 and 20 units from foci so sum of distances is 35 . If $P=(w, 9)$ then $\triangle P F_{1} F_{2}$ is a right triangle with legs of 7 and $x$ and hypotenuse (35-x).
Pythagorean thm gives $x$ $=16.8$ So $a=12 \pm 16.8$.

B. Let $x=3 b+1$. Factoring $4 x^{4}+3 x^{2}+1=4 x^{4}+4 x^{2}+1-x^{2}=\left(2 x^{2}+1\right)^{2}-x^{2}=$ $\left(2 x^{2}+1+x\right)\left(2 x^{2}+1-x\right)$ Replace $x$ with $3 b+1$ and simplify.
C. $2 \cos ^{2}(6 x)=\sin (12 x)=2 \sin (6 x) \cos (6 x)$ so $\cos (6 x)=0,6 x=90+180 n, x=15+30 n$ or $\cos (6 x)=\sin (6 x), 6 x=45+180 n, x=7.5+30 n .2 \sin (12 y)+2=\cos ^{2}(12 y)=1-\sin ^{2}(12 y)$, $\sin ^{2}(12 y)+2 \sin (12 y)+1=0,(\sin (12 y)+1)^{2}=0$ so $\sin (12 y)=-1,12 y=270+360 n$, $y=22.5+30 n$. Complimentary pairs come from $x=7.5+30 n, y=22.5+30 n$.
D. Outer rectangle: $(10+2 x)(16+2 x)$; middle band: $160-(10-2 x)(16-2 x)=52 x-4 x^{2}$

Solve $3\left(52 x-4 x^{2}\right)=160+52 x+4 x^{2}$ or $16 x^{2}-104 x+160=0$ or $8(x-4)(2 x-5)=0$ If $x=4$, inner is $2 \times 8=16$; if $x=2.5$, inner is $5 \times 11=55$.
E. $A F: A B=A B: A C$ so $A F=27 / 4 . F C=A B-A F=21 / 4$.
$\operatorname{Area}(\triangle D F C) / \operatorname{Area}(\triangle D A F)=F C / A F$, since they have a common height.
F. If $15+2(k)=5+6(2 k)$ then $k=1$ and there was $15+2(1)=\$ 17$ to spend. If $15+2(2 n)=5+6(n)$ then $n=5$ and there was $5+6(5)=\$ 35$ to spend. Total was $35+17=\$ 52$.

