# MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2006 <br> <br> ROUND 1 ALGEBRA 2: ALGEBRAIC FUNCTIONS <br> <br> ROUND 1 ALGEBRA 2: ALGEBRAIC FUNCTIONS ANSWERS 

A) $\qquad$
B)
C) $\qquad$
A) If $f(x)=2 x^{2}+1$, express $f\left(2 y^{2}+1\right)$ as a simplified expression in terms of $y$.
B) Suppose $G(x)=2 x^{2}$ and $F(x)=1-3 x$. Find all $x$ for which

$$
F(G(x))-G(F(x))=x .
$$

C) Given $h(x)=2 x+1$, and $g(x)=3-2 x$, find all x for which $h^{-1}(x)+g^{-1}(x)=\frac{h(x) \cdot g(x)}{h(x)+g(x)}$.

# MASSACHUSETTS MATHEMATICS LEAGUE <br> FEBRUARY 2006 ROUND 2 ELEMENTARY NUMBER THEORY 

## ANSWERS

A) $\qquad$
B)
C) $($ $\qquad$
$\qquad$ )
A) If $a b c$ is a three digit prime, find the sum of the second largest prime factor and the second smallest prime factor of the six digit number $a b c a b c$.
B) If $A \odot B$ is defined as the sum of all composite numbers strictly between $A$ and $B$, that is, including neither $A$ nor $B$, evaluate:

$$
(15 \odot 21) \subset(28 \subset 33)
$$

B) If $x$ and $y$ are integers satisfying $2 x y-4 x-y-1=0$, which ordered pair $(x, y)$ is furthest from the origin?

# MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2006 ROUND 3 TRIG: IDENTITIES \& INVERSE FUNCTIONS ANSWERS 

A) $Y=$ $\qquad$
B) $\qquad$
C) $\qquad$
A) Suppose $\operatorname{Arctan}(\sqrt{x})=d$, where $0^{\circ}<d<90^{\circ}$. If $d=\operatorname{Arcsec}(Y)$, express $Y$ in terms of $x$.
B) Simplify $\frac{\sin \theta}{2(1+\cos \theta)}+\frac{1+\cos \theta}{2 \sin \theta}$ to obtain a single trigonometric function of $\theta$.
C) If $\sin (4 \theta)$ is written in the form $A \sin \theta \cos \theta\left(B+C \sin ^{2} \theta\right)$ for integers $A, B$ and $C$, find $A^{2}+B C$.

# MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2006 ROUND 4 ALGEBRA ONE: WORD PROBLEMS ANSWERS 

A) $\qquad$
B) $\qquad$ mins
C) $\qquad$
A) I have a mixture of quarters and Sacagawea dollar coins the same size. I gave $\$ 16.50$ worth of these coins to a teller, but he mistakenly counted 3 of the quarters as dollars. If he credited me $X$ cents for these coins and the minimum number of coins I could have given the teller is $K$, find the numeric value of $X+K$.
B) I jog at 12 feet per second and my little sister jogs at a constant slower rate. If we run in opposite directions on a quarter mile track, we pass each other every minute. If we run in the same direction, how many minutes will it take me to lap her? (Recall: 1 mile = 5280 feet!)
C) A chemist adds 20 liters of an alcohol and water solution that is $30 \%$ alcohol to 10 liters of an original solution of alcohol and water. He finds the percentage of alcohol in the resulting mixture is 6 percentage points higher than in the original solution.
What was the percentage of alcohol of the original solution?

## ROUND 5 GEOMETRY: CIRCLES

A) $\qquad$
B) $\qquad$
C) $\qquad$
A) A chord of length 96 cm is 20 cm from the center of the circle.

How far is the midpoint of the chord from the furthest point on the circle?
B) Two chords $\overline{A B}$ and $\overline{C D}$ intersect at $E$. If $A E=5 x-3, C E=3 x-1, B A=6 x-2$, and $D C=5 x-1$, find all possible lengths for $A E$.
C) In the dagram (not to scale) $\overline{P A}$ is tangent to the circle with center $O$. $P O=7 \sqrt{7}, P D=D E$ and $A P=7 \sqrt{6}$. Find the exact area of sector ODE.


# MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2006 ROUND 6 ALGEBRA 2: SEQUENCES \& SERIES ANSWERS 

A) $\qquad$ minutes
B)
C) $\qquad$
A) Sal gets 4 hours of homework every school night. On day 1 he is exceptionally motivated and does all his homework. However, on each successive school night he does only half as much homework as he did on the previous school night. At the end of the school year ( 180 days) to the nearest minute, how much total homework will Sal have done?
B) For an arithmetic sequence $a$, we find $a_{2006}$ is twice $a_{2004}$ and $a_{2006}$ is 500 more than three times $a_{2000}$. Find $a_{2005}$.
C) The sum of the first three terms of a geometric series is 296 , while the infinite sum is 80 less than twice that amount. Find the fifth term of the series.

## MASSACHUSETTS MATHEMATICS LEAGUE <br> FEBRUARY 2006 <br> ROUND 7: TEAM QUESTIONS <br> ANSWERS

A) $\qquad$ D)
$\qquad$
B) $\qquad$ E)
C) $\qquad$ ${ }^{\circ}$ - F)
$\qquad$
A) Suppose $f(x)=\frac{2 x-1}{x-3}$ For what values of $x$ does $2 \cdot f(x) \cdot f^{-1}(x)=2$ ?
B) Suppose $m$ and $n$ are twin primes (i.e. primes differing by 2 ) and suppose the digits used to form $m$ and $n$ are distinct. If the smallest such pair of numbers and the largest such pair of number are all added together, what is the sum?
C) In $\triangle A B C, \angle B=\csc ^{-1}\left(\frac{\sqrt{34}}{3}\right)$ and $\angle A=\tan ^{-1}(0.25)$. Find $\mathrm{m} \angle C$ in degrees.
D) I am half as old as my mother was when my brother was twelve years younger than I am now. My brother was born when my mother was 26 . If the sum of my brother's and my own current ages is 36 , how old was my mother when I was born?
E) In the diagram at the right, $\mathrm{m} \angle D C B=30^{\circ}$, $A C=4, I C=6$ and $B C=18$. The exact positive difference between the distances of the two chords from the center of the circle is $a-b \sqrt{c}$ for integers $a, b$, and $c$.
Evaluate $b^{2} c-a$.
F) $\quad T_{n}=3 n+2$. For some integers $j$ and $k, j>k>6$, $T_{k}$ will be the geometric mean between $T_{6}$ and $T_{j}$. Find the smallest possible value of the sum $j+k$.


# MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2006 ANSWERS 

Round 1:Algebraic Functions
A) $8 y^{4}+8 y^{2}+3$
B) $1 / 8,1 / 3$
C) $1 / 2$

Round 2: Elementary Number Theory
A) 24
B) 286
C) $(1,5)$

Round 3: Trig - Identities and Inverse Functions
A) $\sqrt{x+1}$
B) $\csc \theta$
C) 14

Round 4: Algebra 1 - Word Problems
A) 1896
B) 11
C) $21 \%$

Round 5: Geometry - Circles
A) 72
B) 2 or 12
C) $\frac{49 \pi}{3}$

Round 6: Algebra 2 - Sequences and Series
A) 480
B) 150
C) 40.5

Team Round
A) $1,-1$
B) 128
C) $135^{\circ}$
D) 34
E) 280
F) 57

# MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2006 BRIEF SOLUTIONS 

## Round One:

A. $\quad f\left(2 y^{2}+1\right)=2\left(2 y^{2}+1\right)^{2}+1=2\left(4 y^{4}+4 y^{2}+1\right)+1=8 y^{4}+8 y^{2}+3$.
B. $\quad G(F(x))=2(1-3 x)^{2}=18 x^{2}-12 x+2 . F(G(x))=1-6 x^{2}$. Substitute to get
$24 x^{2}-11 x+1=x$, so $(8 \mathrm{x}-1)(3 x-1)=0$.
C. $\quad h^{-1}(x)=1 / 2 x-1 / 2 ; g^{-1}(x)=-1 / 2 x+11 / 2$ so $h^{-1}(x)+g^{-1}(x)=1 . h(x)+g(x)=4 . h(x) \cdot g(x)=$ $-4 x^{2}+4 x+3$. If $1=\left(-4 x^{2}+4 x+3\right) / 4$ then $4 x^{2}-4 x+1=$ $(2 x-1)^{2}=0$.

## Round Two:

A. $\quad a b c a b c=a b c(1001)=\operatorname{abc}(11)(7)(13) . \quad 13+11=24$.
B. $\quad 15 \odot 21=16+18+20=54 ; 28 \odot 33=30+32=62$;
$54 \bigcirc 62=55+56+57+58+60=286$
C. $2 x y-y=4 x+1$ so $y=\frac{4 x+1}{2 x-1}=\frac{2(2 x-1)+3}{(2 x-1)}$ so $2 x-1$ is a factor of $3( \pm 1$ or $\pm 3)$.

Thus, $x$ must be $0, \pm 1$ or 2 . This yields the ordered pairs $(1,5),(0,-1),(2,3)$ and $(-1,1)$. The first of these is furthest from the origin.

## Round Three:

A. Right triangle has opposite side $\sqrt{x}$, adjacent 1 , hypotenuse $\sqrt{1+x}$
B. Common denominator gets
$\frac{\sin ^{2} \theta+(1+\cos \theta)^{2}}{2 \sin \theta(1+\cos \theta)}=\frac{\sin ^{2} \theta+\cos ^{2} \theta+1+2 \cos \theta}{2 \sin \theta(1+\cos \theta)}=\frac{2(1+\cos \theta)}{2 \sin \theta(1+\cos \theta)}=\frac{1}{\sin \theta}$.
C. $\quad \sin (2 \cdot 2 \theta)=2 \sin (2 \theta) \cos (2 \theta)=2(2 \sin \theta \cos \theta)\left(1-2 \sin ^{2} \theta\right)=4 \sin \theta \cos \theta\left(1+-2 \sin ^{2} \theta\right)$, so $A=4, B=1, C=-2$.

## Round Four:

A. The absolute minimum number of coins would be 16 dollars and 2 quarters, but since there must be at least 3 quarters, we have 15 dollars and 6 quarters $\rightarrow K=21$.
The teller's mistake credited my account $3(75)=225$ extra cents $\rightarrow X=1875$.
B. In one minute $12(60)+\mathrm{x}(60)=1320$ so sister jogs at $10 \mathrm{ft} / \mathrm{sec}$. In same direction I gain 2 $\mathrm{ft} / \mathrm{sec}$ or $120 \mathrm{ft} /$ minute. $1320 / 120=11$.
C. Original mix was $n / 100 \cdot \frac{n+6}{100}=\frac{(n / 100) 10+.30(20)}{30}$ Solving, $n=21$.

## Round Five:

A. Rt. triangle with radius as hypotenuse has legs of 20 and $1 / 2$ ( 96 ), so hypotenuse is 52 [ $4 \mathrm{x}(5-12-13)$ triangle] $.20+52=72$
B. $\quad(A E)(B E)=(D E)(C E)$, so $(5 x-3)(x+1)=(3 x-1)(2 x)$. Solve quadratic to get $x=1$ or 3. Both give all positive lengths so $A E=2$ or 12 .
C. Rt $\triangle P O A$ gives $O A=7$. If $D E=x, x(2 x)=(7 \sqrt{6})^{2}=294$, so $x=D E=7 \sqrt{3}$ Thus, $\mathrm{m} \angle D O E=120^{\circ}$ and sector is $1 / 3$ of the circle.

## Round Six:

A. $\quad \mathrm{HW}$ done $=4+2+1+\ldots .+$ a geometric progression of 180 terms with $\mathrm{r}=1 / 2$.

The difference between the sum of 180 terms and the sum of an infinite sequence is considerably less than 1 minute, so use $a /(1-r) \rightarrow 4 /(1-1 / 2)=8 \mathrm{hrs}=480 \mathrm{~min}$
B. $\quad a_{2006}=a_{2000}+6 d=2\left(a_{2000}+4 d\right)$, so $a_{2000}=-2 d$, while $a_{2000}+6 d=500+3 a_{2000}$ so
$a_{2000}=3 d-250$. Thus, $-5 d=-250 \rightarrow d=50, a_{2000}=-100$ and
$a_{2005}=-100+5(50)=150$.
C. $\quad a+a r+a r^{2}=296$, while $a /(1-r)=512 . a=296 /\left(1+r+r^{2}\right)=512(1-r)$, so $296 / 512=\left(1+r+r^{2}\right)(1-r)=1-r^{3} \rightarrow r^{3}=1-296 / 512=216 / 512 \rightarrow$
$r=3 / 4$ and $a=128$.

## Team Round:

A. $\quad f^{-1}(x)=\frac{1-3 x}{2-x}$ so if $f(x) \cdot f^{-1}(x)=\frac{2 x-1}{x-3} \cdot \frac{1-3 x}{2-x}=\frac{-6 x^{2}+5 x-1}{-x^{2}+5 x-6}=1$ then $5 x^{2}=5$, so $x= \pm 1$.
B. Smallest such pair is 3 and 5 . Largest such pair is 59 and 61 . (Note that twin primes with three or more digits either share the most significant digit or the smaller has 9 as both its one and tens digit) Sum is 128 .
C. Draw a right triangle to find $\tan (B)=3 / 5 . \tan A \cdot \tan B \cdot \tan C=\tan A+\tan B+\tan C$ gives $\tan C=-1$ OR use tangent sum identity to find $\tan (A+B)=1$.
D. I am $x$ years old now. "Then" my mother was $2 x$ and my brother $x-12$. Thus, $2 x-(x-12)=26 \rightarrow x=14$. I am 14 and my brother is 22 now. My mother is $26+22=48$ now and thus, 34 when I was born.
E. (See diagram below) $C D=A C(C B) / I C=12 ; C G=.5(18)-6=3$. Since $\Delta C G J$ is a 30-60-90, $C J=2 \sqrt{3}$, so $J E=.5(22)-4-C J$.
$G F=G J+2(J E)=\sqrt{3}+2(7-2 \sqrt{3})=14-3 \sqrt{3}$, while $E F=\sqrt{3} J E=7 \sqrt{3}-6$
Difference: $20-10 \sqrt{3}$
F. $\sqrt{20(3 j+2)}=3 k+2$. Square and simplify to $20 j=3 k^{2}+4 k-12$ which must be a multiple of 4 , so k is even. (WHY?) If we substitute $k=2 n$ we have $3 n^{2}+2 n-3=5 j$. Trial and error yields $n \cong 3 \bmod 5$ or $n=3,8,13, \ldots$ $\rightarrow k=6,16, \ldots$ Since $k>6, k=16$ and $j=41$.


