MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 ROUND 1 ALGEBRA 2: SIMULTANEOUS EQUATIONS & DETERMINANTS ANSWERS

A) Find x if
$$\begin{vmatrix} 1 & 1 & 1 \\ x & 2 & x \\ 0 & x & 1 \end{vmatrix} = 5$$

B) Find all ordered pairs (x, y) that satisfy this system:

$$\frac{-1}{1-x} = \frac{1}{2y+1}$$
$$(x-1)^2 + (2y+1)^2 = 50$$

C) If A is the sum of the x-coordinates of the ordered pairs (x, y) satisfying:

$$(1+x\sqrt{2})^2(1-x\sqrt{2})^2 = y^2$$

3x = y-1

and N is the <u>number</u> of ordered pairs satisfying the system, find (A, N).

MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 ROUND 2 ALGEBRA 1: RATIONAL EXPONENTS/RADICALS

ANSWERS

A)	 	
B)		
C)		

A) If $\sqrt{2^{3^2}} + \sqrt{2^{2^3}} = a + 8\sqrt{b}$, find the ordered pair (a, b).

B) Express the sum below as a simplified radical:

$$\frac{2}{2\sqrt{2}+\sqrt{7}} + \frac{2}{\sqrt{7}+\sqrt{6}} + \frac{2}{\sqrt{6}+\sqrt{5}} + \frac{2}{\sqrt{5}+2} + \frac{2}{2+\sqrt{3}} + \frac{2}{\sqrt{3}+\sqrt{2}}$$

C) Solve for x:
$$\frac{(1/4)^{3x}}{2(4)^7} = (8^{x+4})^x$$

MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 ROUND 3 ALGEBRA 2: POLYNOMIAL FUNCTIONS ANSWERS

A) _	
B) _	
C)	

A) Determine k so that -1 is a root of $(k-3)x^3 + (2k-5)x^2 + (k-7)x + (k-10) = 0$.

B) The polynomial function f(x) has exactly three distinct zeros at x = 1, x = -4/3 and x = 3/2. If f(0) = -12, find f(-1).

C) The polynomial P(x) has integer coefficients and leaves a remainder of -3 when divided by (x - 2). The remainder is 17 when P(x) is divided by (x + 3). What is the remainder when P(x) is divided by (x - 2)(x + 3)?

•

MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 ROUND 4 ALGEBRA ONE: ANYTHING ANSWERS

A)
B)
C)

A) Find the sum of the 4 numbers that form the coordinates for the intercepts of the line

20x + 30y = 24,072

B) A company makes school sweatshirts and sweatpants. Five sweatshirts and six sweatpants cost a total of \$147. For orders totaling more than 30 items, the company reduced by 40% the price of sweatshirts and cuts the price of sweatpants in half. Forty sweatshirts and forty sweatpants, therefore, cost a total of \$578. Find the original cost of a single pair of sweatpants.

C) If |x - a| = a + 2, x > 0 and $a \le 668$, find the maximum possible value of x + a.

MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 ROUND 5: PLANE GEOMETRY ANYTHING ANSWERS

A)	
B)	
C)	

- A) In isosceles triangle *ABC*, $m \angle B = 7 (m \angle A)$. Find both possible measures for $\angle C$.
- B) In ΔJKP , m $\angle P = 90$. *M* is on \overline{JK} so that $\overline{PM} \perp \overline{JK}$ and *N* is on \overline{KP} so that $\overline{MN} \perp \overline{KP}$. If JP = 450 and KP = 600, find *MN*.

C) In $\triangle ABD$, AD = 12, DB = 8 and BA = 16. The bisector of exterior $\angle DBC$ intersects line AD at E; F is on \overline{AB} so that FDEB is a trapezoid. If \overline{FE} intersects \overline{BD} at G, find BG.

MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 ROUND 6: PROBABILITY & BINOMIAL THEOREM ANSWERS

A)	
B)	
C)	

A) Suppose "numerical key" refers to: 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9 and "operation key" refers to: ^(raise to a power), ÷(divide), x(multiply), +(add) or –(subtract)

I pressed 4 keys on my TI-84: a numerical key, then an operation key, then a numerical key and then ENTER. The answer displayed on the screen was 16. If each key sequence that could generate this answer is equally likely, what is the probability that I pressed the 4 key twice?

B) If $(\sqrt{2} + \sqrt{3})^6 = a + b\sqrt{6}$, where *a* and *b* are integers, find the value of a + b.

C) Suppose we call a^n the <u>first</u> term in the expansion of $(a + b)^n$. Find both values of *n*, if the coefficients of the fifth, sixth and seventh terms in the expansion form an arithmetic sequence.

MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 ROUND 7: TEAM QUESTIONS ***** NO CALCULATORS ON THIS ROUND ****

ANSWERS

A) Let *A* be the product of all values for the constant *k* for which the system has <u>no</u> solutions for (x, y). Let *B* be the product of all values for the constant *k* for which the system has <u>infinitely many</u> solutions for (x, y). Find A + B.

$$4x + k^2 y = -4 - 2k$$
$$(k^2 - 5)x - y = 2$$

- B) Let A be a positive two-digit integer with the property that if the digits are reversed to form The smaller integer B, then $A^2 - B^2$ is a perfect square. Find the sum of all values of A with this property.
- C) The zeros of $y = f(x) = ax^3 + bx^2 + cx + 7$ are one more than the reciprocals of the zeros of $y = g(x) = x^3 + x^2 5x + 2$. Determine (a, b, c).
- D) *ABCD* is a parallelogram. Three of the vertices are (1, 7), (-3, 1) and (9, 4). The fourth vertex has several possible locations. If *P* is the one furthest from the line y = x, exactly how far is *P* from the origin?
- E) $\triangle ABC$ is equilateral with AB = 26. Points *D*, *E* and *F* are placed so that $AD = \frac{1}{4}(AB)$, $BE = \frac{1}{4}(BC)$ and $CF = \frac{1}{4}(CA)$ as shown. Find the exact area of the shaded region.

F) Assume *n* is a positive integer. Find the sum of all different values of *n* for which the expansion of $(4x^n + \frac{x^{-3}}{2})^{10}$ will contain an *x*-free term, i.e. a constant term.

MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 ANSWERS

Round 1: Algebra 2 – Simultaneous Equations and Determinants

A) -3 B) (6, 2) (-4, -3) C) (0, 4)

Round 2: Algebra 1 – Rational Exponents and Radicals

A) (16, 8) B) $2\sqrt{2}$ C) -1, -5

Round 3: Polynomial Functions

A) 5 B) -10 C) -4x + 5

Round 4: Algebra 1 – Anything

A) 2006	B) \$14.50	C) 2006
---------	------------	---------

Round 5: Plane Geometry - Anything

A) 20, 84	B) 288	C) 16/3
-----------	--------	---------

Round 6: Algebra 2 – Probability & Binomial Theorem

A) 1/8 B) 683 C) 7, 14

Team Round

A) -4	B) 65	C) (-2, 11, -17)
D) $\sqrt{137}$	E) 52 √3	F) 51

MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 BRIEF SOLUTIONS

Round One:

- A. $(2+0+x^2) (0+x^2+x) = 5$ means 2-x = 5, so x = -3.
- B. First equation simplifies to x 1 = 2y + 1; sub for 2y + 1 in second to get $2(x-1)^2 = 50$, so $x 1 = \pm 5$. If x = 6, y = 2; if x = -4, y = -3.
- C. First eqtn: $y^2 = [(1 + x\sqrt{2})(1 x\sqrt{2})]^2$ so $y = \pm (1 2x^2)$ so $3x + 1 = 1 2x^2$ meaning x = 0 or x = -3/2; or $3x + 1 = 2x^2 1$ meaning x = 2 or x = -1/2The sum of the four numbers is 0.

Round Two:

A. $\sqrt{2^9} + \sqrt{2^8} = 2^{4.5} + 2^4 = 16 + 2^3 2^{1.5} = 16 + 8\sqrt{8}$ so (a, b) = (16, 8). B. Replace $2\sqrt{2}$ with $\sqrt{8}$. Note $\frac{1}{\sqrt{x+1} + \sqrt{x}} \left(\frac{\sqrt{x+1} - \sqrt{x}}{\sqrt{x+1} - \sqrt{x}} \right) = \sqrt{x+1} - \sqrt{x}$ so $2\left(\sqrt{8} - \sqrt{7} + \sqrt{7} - \sqrt{6} + \sqrt{6} - \sqrt{5} + \dots + \sqrt{3} - \sqrt{2}\right) = 2(\sqrt{8} - \sqrt{2}) = 2(2\sqrt{2} - \sqrt{2})$ C. $2^{(-6x)} / 2^{(15)} = 2^{(3(x+4)x)}$ so $-6x - 15 = 3x^2 + 12x$ etc.

Round Three:

- A. $(k-3)(-1)^3 + (2k-5)(-1)^2 + (k-7)(-1) + (k-10) = 0$ simplifies to k-5=0
- B. $k(x-1)(3x+4)(2x-3) = k(6x^3 7x^2 11x + 12) \rightarrow 12k = -12 \rightarrow k = -1$ $\rightarrow f(x) = -6x^3 + 7x^2 + 11x - 12 \rightarrow f(-1) = 6 + 7 - 11 - 12 = -10.$
- C. $P(x) = Q_1(x)(x-2)(x+3) + ax + b$ [2nd degree divisor can leave a 1st degree remainder.] $P(x) = Q_2(x)(x-2) - 3 \rightarrow P(2) = -3 = 2a + b$ $P(x) = Q_3(x) (x+3) + 2 \rightarrow P(-3) = 17 = -3a + b \rightarrow a = -4, b = 5$

Round Four:

- A. $30y = 24,072 \rightarrow y$ -intercept = (0, 802.4) $20x = 24,072 \rightarrow x$ -intercept = (1203.6, 0)
- B. 5s + 6p = 147 and 40(0.60s) + 40(0.5p) = 578 or 24s + 20p = 578; system solves to s = 12, p = 14.5.
- C. If x a is negative, |x a| = a x = a + 2 means x = -2 violating x > 0. Thus, x - a is nonnegative so |x - a| = x - a = a + 2, so x + a = a + 2 + (2a) = 3a + 2 maximized when a = 668, so x = 2006.

Round Five:

- A. If A is a base angle 180 = A + A + 7A. A = C = 20; if B is a base angle 180 = 7A + 7A + A. A. A = 12, C = B = 7(12) = 84.
- B. JK = 750 (Pythagoras, or 3-4-5 scaled by 150) $\Delta MKP \sim \Delta PKJ$ so MK/600 = 600/750 and MK = 480. $\Delta MNK \sim \Delta JPK$, so MN/450 = 480/750 and MN = 288.

C. Transversal *DB* gives $m \angle FDB = m \angle DBE$; transversal *FB* gives $m \angle DFB = m \angle CBE$, so FB = DB (isos triangle) and *DF* is midline of $\triangle AEB$, so DE = AD. In $\triangle AEB$, both *BD* and *EF* are medians so BG = 2/3 (*BD*).

Round Six:

- A. The possible key sequences were: 4², 2⁴, 4x4, 8x2, 8+8, and 2x8, 9+7 and 7+9, so prob =1/8.
- B. Expand via binomial theorem or

$$\left(\sqrt{2} + \sqrt{3}\right)^{2(3)} = \left(5 + 2\sqrt{6}\right)^3 = 5^3 + 3(25)2\sqrt{6} + 3(5)4(6) + 8(6)\sqrt{6} = 485 + 198\sqrt{6}$$
C. If $_nC_6 - _nC_5 = _nC_5 - _nC_4$ then
$$\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{6!} = \frac{2n(n-1)(n-2)(n-3)(n-4)}{5!} - \frac{n(n-1)(n-2)(n-3)}{4!}$$
so $\frac{(n-4)(n-5)}{6(5)} = \frac{2(n-4)}{5} - \frac{1}{1}$ so $n^2 - 9n + 20 = 12(n-4) - 30 \dots$ n = 7 or 14

Team Round:

- A. Find *k* so coeff. matrix has determinant = 0: $k^2(k^2 5) + 4 = 0$ gives $k = \pm 2$ or ± 1 Substitute to find inconsistent when k = 1 or -2; dependent when k = 2 or -1. A = B = -2, so sum is -4.
- B. $A = 10a + b \Rightarrow B = 10b + a$. $A^2 B^2 = 99(a b)^2 = 9[(11)(a b)^2] = 9[(11)(a + b)(a b)]$. Since a > b and a and b represent base 10 digits, the latter factor can be a perfect square, if a + b is a multiple of 11 and a b = 1, which only happens for (a, b) = (6, 5).
- C. Let the roots of y = g(x) be *r*, *s* and *t*. Then: r + s + t = -1, rs + rt + st = -5 and rst = -2If f(x) has zeros: 1 + 1/r, 1 + 1/s and 1 + 1/t:

$$(1+1/r) + (1+1/s) + (1+1/t) = \frac{3rst + rs + rt + st}{rst} = \frac{-6 + (-5)}{-2} = \frac{11}{2}$$

$$(1+1/r)(1+1/s) + (1+1/r)(1+1/t) + (1+1/s)(1+1/t) =$$

$$\frac{3rst + 2(rs + rt + st) + (r + s + t)}{rst} = \frac{-17}{-2} = \frac{17}{2}$$

$$(1+1/r)(1+1/s)(1+1/t) = 1 + \frac{1 + (r + s + t) + (rs + rt + st)}{rst} = 1 + \frac{1 + (-1) + (-5)}{-2} = \frac{7}{2}$$

$$f(x) = k(x^3 - (11/2)x^2 + (17/2)x - 7/2 = -2x^3 + 11x^2 - 17x + 7$$

D. The possible locations of the 4th vertex are: (13, 10), (-11, 4) and (5, -2). Note that *A*, *B* and *C* are midpoints of the triangle formed by connecting these three points. The one furthest from y = x is (-11, 4) which is $\sqrt{137}$ from the origin.

E. Area($\triangle ABE$)= ¹/₄ Area($\triangle ABC$). To find Area($\triangle ABY$), find ratio of bases *AY* to *AE*. Add parallel to *AE* from *C*, extend *BF* to *G*. $\triangle AYF \sim \triangle CGF$ gives $AY = 3CG \triangle BYE \sim \triangle BGC$ gives CG = 4YE so AY = 12YE and Area($\triangle ABY$) = (12/13) Area($\triangle ABE$) = 3/13 Area($\triangle ABC$). Removing 3 of these leaves Area($\triangle XYZ$) = (4/13) Area($\triangle ABC$)= (4/13) $169\sqrt{3}$.

F. The k^{th} term in the expansion will be given by $\binom{10}{k} (4x^n)^{10-k} (\frac{x^{-3}}{2})^k$

 $=C(x^{10n-nk-3k})$, where C is a numerical constant. x^0 insures that this is a constant term $\rightarrow k = 10n/(n+3) = 10 - 30/(n+3)$ Thus, n+3 must be a divisor of 30 = (2)(3)(5) The factors of 30 are: 1, 2, 3, 5, 6, 10, 15 and 30 so n may be 2, 3, 7, 12, and 27. The total is 51.