# MASSACHUSETTS MATHEMATICS LEAGUE <br> MARCH 2006 

ROUND 1 ALGEBRA 2: SIMULTANEOUS EQUATIONS \& DETERMINANTS ANSWERS
A) $\qquad$
B) $\qquad$
C)( $\qquad$ , $\qquad$ )
A) Find $x$ if $\left|\begin{array}{lll}1 & 1 & 1 \\ x & 2 & x \\ 0 & x & 1\end{array}\right|=5$
B) Find all ordered pairs $(x, y)$ that satisfy this system:

$$
\begin{aligned}
& \frac{-1}{1-x}=\frac{1}{2 y+1} \\
& (x-1)^{2}+(2 y+1)^{2}=50
\end{aligned}
$$

C) If $A$ is the sum of the $x$-coordinates of the ordered pairs $(x, y)$ satisfying:

$$
\begin{aligned}
& (1+x \sqrt{2})^{2}(1-x \sqrt{2})^{2}=y^{2} \\
& 3 x=y-1
\end{aligned}
$$

and $N$ is the number of ordered pairs satisfying the system, find $(A, N)$.

## MASSACHUSETTS MATHEMATICS LEAGUE

 MARCH 2006ROUND 2 ALGEBRA 1: RATIONAL EXPONENTS/RADICALS
ANSWERS
A)
B) $\qquad$
C)
C)
A) If $\sqrt{2^{3^{2}}}+\sqrt{2^{2^{3}}}=a+8 \sqrt{b}$, find the ordered pair $(a, b)$.
B) Express the sum below as a simplified radical:

$$
\frac{2}{2 \sqrt{2}+\sqrt{7}}+\frac{2}{\sqrt{7}+\sqrt{6}}+\frac{2}{\sqrt{6}+\sqrt{5}}+\frac{2}{\sqrt{5}+2}+\frac{2}{2+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{2}}
$$

C) $\quad$ Solve for $x: \quad \frac{(1 / 4)^{3 x}}{2(4)^{7}}=\left(8^{x+4}\right)^{x}$

# MASSACHUSETTS MATHEMATICS LEAGUE <br> MARCH 2006 ROUND 3 ALGEBRA 2: POLYNOMIAL FUNCTIONS ANSWERS 

А) $\qquad$
B) $\qquad$
C) $\qquad$
A) Determine $k$ so that -1 is a root of $(k-3) x^{3}+(2 k-5) x^{2}+(k-7) x+(k-10)=0$.
B) The polynomial function $f(x)$ has exactly three distinct zeros at $x=1, x=-4 / 3$ and $x=3 / 2$. If $f(0)=-12$, find $f(-1)$.
C) The polynomial $P(x)$ has integer coefficients and leaves a remainder of -3 when divided by $(x-2)$. The remainder is 17 when $P(x)$ is divided by $(x+3)$. What is the remainder when $P(x)$ is divided by $(x-2)(x+3)$ ?

## MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 ROUND 4 ALGEBRA ONE: ANYTHING

ANSWERS
A) $\qquad$
B) $\qquad$
C) $\qquad$
A) Find the sum of the 4 numbers that form the coordinates for the intercepts of the line

$$
20 x+30 y=24,072
$$

B) A company makes school sweatshirts and sweatpants. Five sweatshirts and six sweatpants cost a total of $\$ 147$. For orders totaling more than 30 items, the company reduced by $40 \%$ the price of sweatshirts and cuts the price of sweatpants in half. Forty sweatshirts and forty sweatpants, therefore, cost a total of $\$ 578$. Find the original cost of a single pair of sweatpants.
C) If $|x-a|=a+2, x>0$ and $a \leq 668$, find the maximum possible value of $x+a$.

# MASSACHUSETTS MATHEMATICS LEAGUE <br> MARCH 2006 <br> ROUND 5: PLANE GEOMETRY ANYTHING <br> ANSWERS 

A) $\qquad$
B) $\qquad$
C)
A) In isosceles triangle $A B C, \mathrm{~m} \angle B=7(\mathrm{~m} \angle A)$. Find both possible measures for $\angle C$.
B) In $\triangle J K P, \mathrm{~m} \angle P=90 . M$ is on $\overline{J K}$ so that $\overline{P M} \perp \overline{J K}$ and $N$ is on $\overline{K P}$ so that $\overline{M N} \perp \overline{K P}$. If $J P=450$ and $K P=600$, find $M N$.
C) In $\triangle A B D, A D=12, D B=8$ and $B A=16$. The bisector of exterior $\angle D B C$ intersects line $A D$ at $E$; F is on $\overline{A B}$ so that FDEB is a trapezoid. If $\overline{F E}$ intersects $\overline{B D}$ at G , find BG.


# MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 ROUND 6: PROBABILITY \& BINOMIAL THEOREM ANSWERS 

A) $\qquad$
B)
C)
A) Suppose "numerical key" refers to: $0,1,2,3,4,5,6,7,8$ or 9 and "operation key" refers to: ${ }^{\wedge}$ (raise to a power), $\div$ (divide), $x$ (multiply), $+($ add $)$ or -(subtract)

I pressed 4 keys on my TI-84: a numerical key, then an operation key, then a numerical key and then ENTER. The answer displayed on the screen was 16. If each key sequence that could generate this answer is equally likely, what is the probability that I pressed the 4 key twice?
B) If $(\sqrt{2}+\sqrt{3})^{6}=a+b \sqrt{6}$, where $a$ and $b$ are integers, find the value of $a+b$.
C) Suppose we call $a^{\mathrm{n}}$ the first term in the expansion of $(a+b)^{\mathrm{n}}$. Find both values of $n$, if the coefficients of the fifth, sixth and seventh terms in the expansion form an arithmetic sequence.

## MASSACHUSETTS MATHEMATICS LEAGUE <br> MARCH 2006 <br> ROUND 7: TEAM QUESTIONS ***** NO CALCULATORS ON THIS ROUND $* * * *$

ANSWERS
A) $\qquad$ D) $\qquad$
B) $\qquad$ E) $\qquad$
C) $\qquad$ , , , ,__()
F) $\qquad$
A) Let $A$ be the product of all values for the constant $k$ for which the system has no solutions for $(x, y)$. Let $B$ be the product of all values for the constant $k$ for which the system has infinitely many solutions for $(x, y)$. Find $A+B$.

$$
\begin{aligned}
4 x+k^{2} y & =-4-2 k \\
\left(k^{2}-5\right) x-y & =2
\end{aligned}
$$

B) Let $A$ be a positive two-digit integer with the property that if the digits are reversed to form
The smaller integer $B$, then $A^{2}-B^{2}$ is a perfect square. Find the sum of all values of $A$ with this property.
C) The zeros of $y=f(x)=a x^{3}+b x^{2}+c x+7$ are one more than the reciprocals of the zeros of
$y=g(x)=x^{3}+x^{2}-5 x+2$. Determine $(a, b, c)$.
D) $\quad A B C D$ is a parallelogram. Three of the vertices are $(1,7),(-3,1)$ and $(9,4)$. The fourth vertex has several possible locations. If $P$ is the one furthest from the line $y=x$, exactly how far is $P$ from the origin?
E) $\quad \triangle A B C$ is equilateral with $A B=26$. Points $D, E$ and $F$ are placed so that $A D=1 / 4(A B), B E=1 / 4(B C)$ and $C F=1 / 4(C A)$ as shown. Find the exact area of the shaded region.

F) Assume $n$ is a positive integer. Find the sum of all different values of $n$ for which the expansion of $\left(4 x^{n}+\frac{x^{-3}}{2}\right)^{10}$ will contain an $x$-free term, i.e. a constant term.

## MASSACHUSETTS MATHEMATICS LEAGUE <br> MARCH 2006 ANSWERS

Round 1: Algebra 2 - Simultaneous Equations and Determinants
A) -3
B) $(6,2)(-4,-3)$
C) $(0,4)$

Round 2: Algebra 1 - Rational Exponents and Radicals
A) $(16,8)$
B) $2 \sqrt{2}$
C) $-1,-5$

Round 3: Polynomial Functions
A) 5
B) -10
C) $-4 x+5$

Round 4: Algebra 1 - Anything
A) 2006
B) $\$ 14.50$
C) 2006

Round 5: Plane Geometry - Anything
A) 20,84
B) 288
C) $16 / 3$

Round 6: Algebra 2 - Probability \& Binomial Theorem
A) $1 / 8$
B) 683
C) 7,14

Team Round
A) -4
B) 65
C) $(-2,11,-17)$
D) $\sqrt{137}$
E) $52 \sqrt{3}$
F) 51

## MASSACHUSETTS MATHEMATICS LEAGUE MARCH 2006 BRIEF SOLUTIONS

## Round One:

A. $\left(2+0+x^{2}\right)-\left(0+x^{2}+x\right)=5$ means $2-x=5$, so $x=-3$.
B. First equation simplifies to $x-1=2 y+1$; sub for $2 y+1$ in second to get $2(x-1)^{2}=50$, so $x-1= \pm 5$. If $x=6, y=2$; if $x=-4, y=-3$.
C. First eqtn: $y^{2}=[(1+x \sqrt{2})(1-x \sqrt{2})]^{2}$ so $y= \pm\left(1-2 x^{2}\right)$ so $3 x+1=1-2 \mathrm{x}^{2}$ meaning $x$ $=0$ or $x=-3 / 2$; or $3 x+1=2 x^{2}-1$ meaning $x=2$ or $x=-1 / 2$ The sum of the four numbers is 0 .

## Round Two:

A. $\sqrt{2^{9}}+\sqrt{2^{8}}=2^{4 \cdot 5}+2^{4}=16+2^{3} 2^{1 \cdot 5}=16+8 \sqrt{8}$ so $(a, b)=(16,8)$.
B. Replace $2 \sqrt{2}$.with $\sqrt{8}$. Note $\frac{1}{\sqrt{x+1}+\sqrt{x}}\left(\frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}\right)=\sqrt{x+1}-\sqrt{x}$ so $2(\sqrt{8}-\sqrt{7}+\sqrt{7}-\sqrt{6}+\sqrt{6}-\sqrt{5}+\ldots+\sqrt{3}-\sqrt{2})=2(\sqrt{8}-\sqrt{2})=2(2 \sqrt{2}-\sqrt{2})$
C. $2^{\wedge}(-6 x) / 2^{\wedge}(15)=2^{\wedge}(3(x+4) x)$ so $-6 x-15=3 x^{2}+12 x$ etc.

## Round Three:

A. $(k-3)(-1)^{3}+(2 k-5)(-1)^{2}+(k-7)(-1)+(k-10)=0$ simplifies to $k-5=0$
B. $k(x-1)(3 x+4)(2 x-3)=k\left(6 x^{3}-7 x^{2}-11 x+12\right) \rightarrow 12 k=-12 \rightarrow k=-1$
$\rightarrow f(x)=-6 x^{3}+7 x^{2}+11 x-12 \rightarrow f(-1)=6+7-11-12=-10$.
C. $P(x)=Q_{1}(x)(x-2)(x+3)+a x+b \quad\left[2^{\text {nd }}\right.$ degree divisor can leave a $1^{\text {st }}$ degree remainder.] $P(x)=Q_{2}(x)(x-2)-3 \rightarrow P(2)=-3=2 a+b$

$$
P(x)=Q_{3}(x)(x+3)+2 \rightarrow P(-3)=17=-3 a+b \rightarrow a=-4, b=5
$$

## Round Four:

A. $30 y=24,072 \rightarrow y$-intercept $=(0,802.4) 20 x=24,072 \rightarrow x$-intercept $=(1203.6,0)$
B. $5 s+6 p=147$ and $40(0.60 s)+40(0.5 p)=578$ or $24 s+20 p=578$; system solves to $s=$ $12, p=14.5$.
C. If $x-\mathrm{a}$ is negative, $|x-\mathrm{a}|=a-x=a+2$ means $x=-2$ violating $x>0$. Thus, $x-a$ is nonnegative so $|x-a|=x-a=a+2$, so $x+a=a+2+(2 a)=3 a+2$ maximized when $a=668$, so $x=2006$.

## Round Five:

A. If $A$ is a base angle $180=A+A+7 A . A=C=20$; if $B$ is a base angle $180=7 A+7 A+$ A. $A=12, C=B=7(12)=84$.
B. $J K=750$ (Pythagoras, or 3-4-5 scaled by 150) $\Delta M K P \sim \Delta P K J$ so $M K / 600=600 / 750$ and $M K=480 . \Delta M N K \sim \Delta J P K$, so $M N / 450=480 / 750$ and $M N=288$.
C. Transversal $D B$ gives $\mathrm{m} \angle F D B=\mathrm{m} \angle D B E$; transversal $F B$ gives $\mathrm{m} \angle D F B=\mathrm{m} \angle C B E$, so $F B=D B$ (isos triangle) and $D F$ is midline of $\triangle A E B$, so $D E=A D$.
In $\triangle A E B$, both $B D$ and $E F$ are medians so $B G=2 / 3(B D)$.

## Round Six:

A. The possible key sequences were: $4^{\wedge} 2,2^{\wedge} 4,4 \times 4,8 \times 2,8+8$, and $2 x 8,9+7$ and $7+9$, so prob $=1 / 8$.
B. Expand via binomial theorem or

$$
(\sqrt{2}+\sqrt{3})^{2(3)}=(5+2 \sqrt{6})^{3}=5^{3}+3(25) 2 \sqrt{6}+3(5) 4(6)+8(6) \sqrt{6}=485+198 \sqrt{6}
$$

C. If ${ }_{n} C_{6}-{ }_{n} C_{5}={ }_{n} C_{5}-{ }_{n} C_{4}$ then

$$
\begin{aligned}
& \frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{6!}=\frac{2 n(n-1)(n-2)(n-3)(n-4)}{5!}-\frac{n(n-1)(n-2)(n-3)}{4!} \\
& \text { so } \frac{(n-4)(n-5)}{6(5)}=\frac{2(n-4)}{5}-\frac{1}{1} \text { so } n^{2}-9 n+20=12(n-4)-30 \ldots \mathrm{n}=7 \text { or } 14
\end{aligned}
$$

## Team Round:

A. Find $k$ so coeff. matrix has determinant $=0: k^{2}\left(k^{2}-5\right)+4=0$ gives $\mathrm{k}= \pm 2$ or $\pm 1$

Substitute to find inconsistent when $\mathrm{k}=1$ or -2 ; dependent when $\mathrm{k}=2$ or -1 .
$A=B=-2$, so sum is -4 .
B. $A=10 a+b \rightarrow B=10 b+a \cdot A^{2}-B^{2}=99(a-b)^{2}=9\left[(11)(a-b)^{2}\right]=$
$9[(11)(a+b)(a-b)]$. Since $a>b$ and $a$ and $b$ represent base 10 digits, the latter factor can be a perfect square, if $a+b$ is a multiple of 11 and $a-b=1$, which only happens for $(a, b)=(6,5)$.
C. Let the roots of $y=g(x)$ be $r, s$ and $t$. Then: $r+s+t=-1, r s+r t+s t=-5$ and $r s t=-2$ If $f(x)$ has zeros: $1+1 / r, 1+1 / s$ and $1+1 / t$ :

$$
\begin{aligned}
& (1+1 / r)+(1+1 / s)+(1+1 / t)=\frac{3 r s t+r s+r t+s t}{r s t}=\frac{-6+(-5)}{-2}=\frac{11}{2} \\
& (1+1 / r)(1+1 / s)+(1+1 / r)(1+1 / t)+(1+1 / s)(1+1 / t)= \\
& \frac{3 r s t+2(r s+r t+s t)+(r+s+t)}{r s t}=\frac{-17}{-2}=\frac{17}{2} \\
& (1+1 / r)(1+1 / s)(1+1 / t)=1+\frac{1+(r+s+t)+(r s+r t+s t)}{r s t}=1+\frac{1+(-1)+(-5)}{-2}=\frac{7}{2} \\
& f(x)=k\left(x^{3}-(11 / 2) x^{2}+(17 / 2) x-7 / 2=-2 x^{3}+11 x^{2}-17 x+7\right.
\end{aligned}
$$

D. The possible locations of the $4^{\text {th }}$ vertex are: $(13,10),(-11,4)$ and $(5,-2)$. Note that $A, B$ and $C$ are midpoints of the triangle formed by connecting these three points. The one furthest from $\mathrm{y}=\mathrm{x}$ is $(-11,4)$ which is $\sqrt{137}$ from the origin.
E. Area $(\triangle A B E)=1 / 4 \operatorname{Area}(\triangle A B C)$. To find $\operatorname{Area}(\triangle A B Y)$, find ratio of bases $A Y$ to $A E$. Add parallel to $A E$ from $C$, extend $B F$ to $G . \triangle A Y F \sim \triangle C G F$ gives $A Y=3 C G \Delta B Y E \sim \triangle B G C$ gives $C G=4 Y E$ so $A Y=12 Y E$ and $\operatorname{Area}(\triangle A B Y)=(12 / 13) \operatorname{Area}(\triangle A B E)=3 / 13$ $\operatorname{Area}(\triangle A B C)$. Removing 3 of these leaves Area $(\triangle X Y Z)=(4 / 13) \operatorname{Area}(\triangle A B C)=(4 / 13)$ $169 \sqrt{3}$.

F. The $k^{\text {th }}$ term in the expansion will be given by $\binom{10}{k}\left(4 x^{n}\right)^{10-k}\left(\frac{x^{-3}}{2}\right)^{k}$
$=C\left(x^{10 n-n k-3 k}\right)$, where $C$ is a numerical constant. $x^{0}$ insures that this is a constant term $\rightarrow k=10 n /(n+3)=10-30 /(n+3)$ Thus, $n+3$ must be a divisor of $30=(2)(3)(5)$ The factors of 30 are: $1,2,3,5,6,10,15$ and 30 so $n$ may be $2,3,7,12$, and 27. The total is 51 .

