MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 – OCTOBER 2007 ROUND 1 VOLUME & SURFACES

ANSWERS

A) _	
B) _	
C)	

- A) The radius of a right circular cylinder is 10 inches and its height is 4 inches. Determine the value of x (> 0) which, when added to either the radius or the height, produces two different right circular cylinders of equal volume.
- B) **Definition**: A <u>locus of points</u> refers to a set of all points (and only those points) that satisfy a given condition.

Example: The locus of points equidistant from a given point

<u>Compute</u> the total area of the region(s) bounded by the locus of points <u>in space</u> 4 cm from a given plane <u>and</u> 6 cm from a fixed point in that plane.

C) The following diagram is the cross-section of the frustum of a right circular cone. <u>Compute</u> the volume of the frustum.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 ROUND 2 PYTHAGOREAN RELATIONS IN RECTILINEAR FIGURES

ANSWERS

A) _	 	 	
B) _			
C)			

- A) The hypotenuse and long leg of a right triangle have lengths $11\sqrt{3}$ and $7\sqrt{7}$ respectively. <u>Compute</u> the length of the short leg.
- B) <u>Compute</u> the distance between the bisectors of a pair of opposite angles in a 5 x 12 rectangle.
- C) In right $\triangle ABC$, AC = 28, BC = 21, $\overline{AC} \perp \overline{BC}$ and $\frac{\text{Area}(\Delta BCD)}{\text{Area}(\Delta ACD)} = \frac{3}{4}$. <u>Compute</u> CD.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 ROUND 3 ALG 1: LINEAR EQUATIONS

ANSWERS

A)	 	
B)	 	
C)		

A) Find a simplified expression for the value of x in terms of a and b, given $a + b \neq 0$: a(a-2x) = b(b+2x)

B) For how many ordered pairs of <u>positive</u> integers does $x - \frac{11 - y}{3} = 18$

C) What is the original cost of a dozen eggs, if buying an additional 4 eggs for 32ϕ lowers the cost per dozen by 4ϕ ?

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 ROUND 4 ALG 1: FRACTIONS & MIXED NUMBERS

ANSWERS

A) _____ B) _____ C) _____

**** NO CALCULATORS ON THIS ROUND *****

A) Compute:
$$\frac{2\frac{7}{16} - 3\frac{3}{4}}{5\frac{5}{8} + 7\frac{1}{2}}$$

B) Solve for x.
$$\frac{x-3}{x+1} - \frac{2x-8}{x^2-1} = \frac{3}{x-1}$$

C) If the integer
$$n \ge 1$$
 and $\frac{(n+1)!(2n-2)!}{(n-1)!(2n)!} = \frac{2}{7}$, compute *n*.

Recall: $n! = n(n-1)(n-2) \dots \cdot 2 \cdot 1$ and 0! = 1

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 ROUND 5 INEQUALITIES & ABSOLUTE VALUE

ANSWERS

- A) Find the area of the region defined by $\begin{cases} y \le |x| \\ x \le 2 \\ x \ge -1 \\ y \ge 0 \end{cases}$
- B) Solve for x over the reals. $\frac{|x-3|(x-4)|}{(x+5)^3} \ge 0$

C) Determine the set of values of x (over the reals) for which the following inequality is satisfied:

$$\frac{1}{x} \le \frac{1}{x-1} - \frac{1}{2}$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 ROUND 6 ALG 1: EVALUATIONS

ANSWERS

A)		 		 	
B)		 		 	
C)	(_ ,		_)

A) 22/7 and 3.14 are often used as approximations of π . When 22/7 is approximated as 3.14, the error is $\frac{1}{n}$, where *n* is a positive integer? <u>Compute *n*</u>.

B) Given:
$$\frac{3A+5B}{4B-2A} = 2$$
 Compute: $\frac{2A-3B}{A}$

C) An ad cost 25ϕ per line to run on weekdays, 20ϕ per line on Saturdays and 50ϕ on Sundays. Of course, since you are competing in an MML meet today, it is the first Thursday of the month. The cost for running a one line ad for 30 days, starting on the first of a month will vary slightly depending on what day of the week the first day of the month falls. Determine the ordered pair of integers (*A*, *B*), where *A* denotes the date of the first Thursday of the month in which the cost of running the ad is the maximum *B* (in cents).

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 ROUND 7 TEAM QUESTIONS

ANSWERS

- A) An equilateral triangle with side \underline{s} and its inscribed circle are rotated around one of the axes of symmetry of the equilateral triangle generating a cone and a sphere. Determine a simplified expression in terms of \underline{s} for the volume of the region inside the cone and outside the sphere.
- B) In a right triangle with sides of integer length, the hypotenuse is 1 unit longer than the longer leg. Determine the lengths of the sides of such a right triangle if the perimeter is less than 1000, but as large as possible.
- C) A number of pencils were purchased for 30ϕ . If the price per dozen were lowered by 27ϕ , then 3 more pencils could have been bought for 30ϕ . If *Q* denotes the number of pencils that could be bought for 30ϕ at the lower unit price *P* (in cents), determine the ordered pair (*Q*, *P*).
- D) Let the solution of the equation $\frac{1}{1+\frac{2}{x+3}} = 4-0.\overline{5}$ be $x = \frac{A}{B}$, a reduced fraction,

where A and B denote integers and A < B. Determine the smallest positive integer n such that $\frac{A+n}{B}$ is an integer.

- E) The region satisfying the inequality |x 2007| + |y + 2008| < A contains 1985 lattice points, i.e. points with integer coordinates. Determine the integer A for which this statement is true.
- F) Four students enter a room. Each student has a cell phone. The students put all their cell phones into the same pile. When the students leave, each student is given a cell phone. What is the probability that none of the students will receive their own cell phone?

Round 1

A) Let x denote the increase in radius or height. Then $\pi(10 + x)^2(4) = \pi(10)^2(4 + x)$ $\rightarrow 4(100 + 20x + x^2) = 400 + 100x \rightarrow 4x^2 - 20x = 4x(x - 5) = 0 \rightarrow x = 5$

Round 2

Round 3

- A) $a(a-2x) = b(b+2x) \rightarrow a^2 b^2 = 2bx + 2ax \rightarrow (a+b)(a-b) = 2x(a+b) \rightarrow x = \frac{a-b}{2}$
- B) Solving for y in terms of $x \rightarrow y = 65 3x$. Clearly, for x = 1...21, y will be a positive integer. Thus, there are <u>21</u> solutions.

C) Assume 12 eggs cost $x \notin$ and 16 cost $(x + 32) \notin$ or $\frac{3}{4}(x + 32) \notin$ /dozen

Then
$$\frac{3}{4}(x+32) = x-4 \rightarrow 3x+96 = 4x-16 \rightarrow x = 112 \text{ or } \$1.12$$

Round 4

A)
$$\frac{2\frac{7}{16} - 3\frac{3}{4}}{5\frac{5}{8} + 7\frac{1}{2}} = \frac{\left(\frac{39}{16} - \frac{15}{4}\right)16}{\left(\frac{45}{8} + \frac{15}{2}\right)16} = \frac{39 - 60}{90 + 120} = \frac{-21}{210} = \frac{-1}{10} \text{ or } -\underline{0.1}$$

B) Multiplying by the LCD = (x + 1)(x - 1), (x - 3)(x - 1) - 2x + 8 - 3x - 3 = 0 $\Rightarrow x^2 - 4x + 3 - 5x + 5 = 0 \Rightarrow x^2 - 9x + 8 = (x - 1)(x - 8) = 0 \Rightarrow x = \underline{8}$ (x = 1 is extraneous)

C)
$$\frac{(n+1)!(2n-2)!}{(n-1)!(2n)!} = \frac{(n+1)n(n-1)!(2n-2)!}{(n-1)!(2n)(2n-1)(2n-2)!} = \frac{(n+1)n}{(2n)(2n-1)} = \frac{2}{7} \rightarrow 7n^2 + 7n = 8n^2 - 4n$$
$$\rightarrow n^2 - 11n = n(n-11) = 0 \rightarrow n = \underline{11}$$

Here's the original question C (nixed by the proofreaders): For extremely large positive values of n, the following fraction approaches a fixed value L. Compute L.

$$\frac{(n+1)!(2n-2)!}{(n-1)!(2n)!}$$

You might want to try your hand at solving this question before peeking at the solution below.

$$\frac{(n+1)!(2n-2)!}{(n-1)!(2n)!} = \frac{(n+1)n(n-1)!(2n-2)!}{(n-1)!(2n)(2n-1)(2n-2)!} = \frac{n^2+n}{4n^2-2n}$$

Dividing numerator and denominator by n^2 , we have $\frac{1+\frac{1}{n}}{4+\frac{2}{n}}$

As *n* takes on extremely large positive values (i.e. approaches infinity), the fractional terms in the numerator and denominator each approach zero and the overall fraction approaches 1/4 or 0.25

Round 6

A)
$$\frac{22}{7} - \frac{314}{100} = \frac{22(100) - 314(7)}{7(100)} = \frac{2200 - 2198}{700} = \frac{1}{350} \Rightarrow n = \underline{350}$$

B)
$$\frac{3A+5B}{4B-2A} = 2 \rightarrow 8B-4A = 3A+5B \rightarrow \frac{B}{A} = \frac{7}{3}$$
 Then $\frac{2A-3B}{A} = 2 - 3\left(\frac{B}{A}\right) = 2 - 7 = -5$

C) The delivery period of 30 days consists of 4 full weeks and 2 days. The day of the week on which the first of the month falls is the same as the 29th day. To maximize the cost, the 29th day must fall on a Sunday, adding a cost of 75¢ for the last two days. (The other possible costs for the last two days are: 45¢, 50¢ and 70¢) Thus, the maximum cost will be $4[5(25) + 20 + 50] + 75 = \underline{855}$ If the first day of the month falls on a Sunday, then the first Thursday is the $\underline{5}^{th}$. $\rightarrow (5, 855)$

Team Round

B) Examining right triangles in which the lengths of the hypotenuse and long leg differ by 1:

<u>a</u>	<u>b</u>	<u>c</u>	<u>Per</u>	Factors
3	4	5	12	3(4)
5	12	13	30	5(6)
7	24	25	56	7(8)
9	40	41	90	9(10)

Apparently, the perimeter is given by a(a + 1)We want *a* as large as possible with $a(a + 1) \le 1000$ $a = 31 \rightarrow 992$, $a = 32 \rightarrow 1056$ Thus, a = 31 and $31^2 + b^2 = (b + 1)^2 \rightarrow 961 = 2b + 1 \rightarrow b = 480$ and the sides are (31, 480, 481)

C) Let *n* denote the number of pencils originally bought for 30¢. Let *p* denote the cost of a single pencil(in cents). Then np = 30 and (n + 3)(p - 27/12) = 30. (n + 3)(p - 2.25) = np - 2.25n + 3p - 6.75 = 30Cancelling, $-2.25n + 3p - 6.75 = 0 \rightarrow -9n + 12p - 27 = 0 \rightarrow -3n + 4p - 9 = 0 \rightarrow p = \frac{9+3n}{4}$ Substituting, $np = n \cdot \frac{9+3n}{4} = 30 \rightarrow 3n^2 + 9n - 120 = 0 \rightarrow (3n + 24)(n - 5) = 0$ $\rightarrow n = 5$ and p = 6which means 8 pencils could be bought for the lower price of 6 - 9/4 = 3.75 cents $\rightarrow (8, 3.75)$

D)
$$\frac{1}{1+\frac{2}{x+3}} = 4 - 0.\overline{5} \Rightarrow \frac{x+3}{x+5} = 4 - \frac{5}{9} = \frac{31}{9} \Rightarrow 9x + 27 = 31x + 155 \Rightarrow x = \frac{-128}{22} = \frac{-64}{11}$$

Note: $\frac{64}{-11}$ is disallowed since $A < B$. If $\frac{-64+n}{11}$ must be an integer and $n > 0$, the minimum possible value of n is 9.

Team Round – continued

E) The regions bounded by |x - 2007| + |y + 2008| = A and |x| + |y| = A contain the same number of lattice points. The latter is a square (diamond) with vertices at $(\pm A, 0)$ and $(0, \pm A)$. The diagram at the right illustrates the lattice points for A = 3. The number of lattice points is 2(1 + 3) + 5 = 13.

Method #1: Pattern appears to be:

Considering the first A consecutive odd integers, the number of lattice points is found by doubling the sum of the first A - 1 odd integers, and then adding the Ath.

 $2[1+3+5+\ldots+(2A-3)]+(2A-1)=1985$ Applying sum formulas for arithmetic sequences,

$$2\left[\frac{A-1}{2}(1+2k-3)\right] + (2A-1) = 1985 \Rightarrow (A-1)(2A-2) + (2A-1)$$

$$\Rightarrow 2(A-1)^2 + 2A - 1 = 2A^2 - 2A - 1984 = 0 \Rightarrow A^2 - A - 992 = 0 \Rightarrow A(A-1) = 992 \Rightarrow A = \underline{32}$$

Method #2	Α	#LPs	
Construct a chart for small values of A and look for a pattern.	1	1	2(1)(0)+1
Note that the number of lattice pts = $2A^2 - 2A + 1$.	2	5	2(2)(1)+1
1	3	13	2(3)(2)+1
	4	25	2(4)(3)+1
	5	41	2(5)(4)+1
		2A(A-1) + '	1

F) With 4 people (A, B, C, D) and 4 phones (a, b, c, d), examine the 4! = 24 permutations of abcd. Any that start with a are eliminated.
Starting with b, bacd, badc, bcad, bcda, bdac, bdca → 3 total mismatches Starting with c, cabd, cadb, cbad, cbda, cdab, cdba → 3 total mismatches Starting with d, dabc, dacb, dbac, dbca, dcab, dcba → 3 total mismatches

Thus, for 4 phones, there are 3(3) = 9 total mismatches \rightarrow P(total mismatch) = $9/24 = \frac{3}{8}$

