MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 1 - OCTOBER 2007
 ROUND 1 VOLUME \& SURFACES

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) The radius of a right circular cylinder is 10 inches and its height is 4 inches. Determine the value of $x(>0)$ which, when added to either the radius or the height, produces two different right circular cylinders of equal volume.
B) Definition: A locus of points refers to a set of all points (and only those points) that satisfy a given condition.

Example: The locus of points equidistant from a given point on a line: 2 points
in a plane: a circle
in space: a sphere

Compute the total area of the region(s) bounded by the locus of points in space 4 cm from a given plane and 6 cm from a fixed point in that plane.
C) The following diagram is the cross-section of the frustum of a right circular cone.

Compute the volume of the frustum.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 1 - OCTOBER 2007
 ROUND 2 PYTHAGOREAN RELATIONS IN RECTILINEAR FIGURES

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) The hypotenuse and long leg of a right triangle have lengths $11 \sqrt{3}$ and $7 \sqrt{7}$ respectively. Compute the length of the short leg.
B) Compute the distance between the bisectors of a pair of opposite angles in a 5×12 rectangle.
C) In right $\triangle A B C$,
$A C=28, B C=21$,
$\overline{A C} \perp \overline{B C}$ and
$\frac{\operatorname{Area}(\triangle B C D)}{\operatorname{Area}(\triangle A C D)}=\frac{3}{4}$.
Compute $C D$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 1-OCTOBER 2007
 ROUND 3 ALG 1: LINEAR EQUATIONS

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Find a simplified expression for the value of x in terms of a and b, given $a+b \neq 0$: $a(a-2 x)=b(b+2 x)$
B) For how many ordered pairs of positive integers does $x-\frac{11-y}{3}=18$
C) What is the original cost of a dozen eggs, if buying an additional 4 eggs for $32 \notin$ lowers the cost per dozen by $4 \not \subset$?

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 1 - OCTOBER 2007
 ROUND 4 ALG 1: FRACTIONS \& MIXED NUMBERS

ANSWERS

A) \qquad
B) \qquad
C) \qquad
***** NO CALCULATORS ON THIS ROUND *****
А) Compute: $\quad \frac{2 \frac{7}{16}-3 \frac{3}{4}}{5 \frac{5}{8}+7 \frac{1}{2}}$
B) Solve for $x . \quad \frac{x-3}{x+1}-\frac{2 x-8}{x^{2}-1}=\frac{3}{x-1}$
C) If the integer $n \geq 1$ and $\frac{(n+1)!(2 n-2)!}{(n-1)!(2 n)!}=\frac{2}{7}$, compute n.

Recall: $n!=n(n-1)(n-2) \ldots \cdot 2 \cdot 1$ and $0!=1$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 ROUND 5 INEQUALITIES \& ABSOLUTE VALUE

ANSWERS

A) \qquad
B) \qquad
C)
A) Find the area of the region defined by $\left\{\begin{array}{l}y \leq|x| \\ x \leq 2 \\ x \geq-1 \\ y \geq 0\end{array}\right.$
B) Solve for x over the reals.

$$
\frac{|x-3|(x-4)}{(x+5)^{3}} \geq 0
$$

C) Determine the set of values of x (over the reals) for which the following inequality is satisfied:

$$
\frac{1}{x} \leq \frac{1}{x-1}-\frac{1}{2}
$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1-OCTOBER 2007 ROUND 6 ALG 1: EVALUATIONS

ANSWERS

A) \qquad
B) \qquad
C) (\qquad , \qquad)
A) $22 / 7$ and 3.14 are often used as approximations of π.

When $22 / 7$ is approximated as 3.14 , the error is $\frac{1}{n}$, where n is a positive integer?
Compute n.
B) Given: $\frac{3 A+5 B}{4 B-2 A}=2 \quad$ Compute: $\frac{2 A-3 B}{A}$
C) An ad cost 25ϕ per line to run on weekdays, 20ϕ per line on Saturdays and $50 \notin$ on Sundays. Of course, since you are competing in an MML meet today, it is the first Thursday of the month. The cost for running a one line ad for 30 days, starting on the first of a month will vary slightly depending on what day of the week the first day of the month falls. Determine the ordered pair of integers (A, B), where A denotes the date of the first Thursday of the month in which the cost of running the ad is the maximum B (in cents).

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1-OCTOBER 2007 ROUND 7 TEAM QUESTIONS

ANSWERS

A) \qquad D) \qquad
B) \qquad E) \qquad
C) (\qquad , \qquad) F$)$ \qquad
A) An equilateral triangle with side \underline{s} and its inscribed circle are rotated around one of the axes of symmetry of the equilateral triangle generating a cone and a sphere. Determine a simplified expression in terms of \underline{s} for the volume of the region inside the cone and outside the sphere.
B) In a right triangle with sides of integer length, the hypotenuse is 1 unit longer than the longer leg. Determine the lengths of the sides of such a right triangle if the perimeter is less than 1000 , but as large as possible.
C) A number of pencils were purchased for 30ϕ. If the price per dozen were lowered by 27ϕ, then 3 more pencils could have been bought for 30ϕ. If Q denotes the number of pencils that could be bought for $30 \notin$ at the lower unit price P (in cents), determine the ordered pair (Q, P).
D) Let the solution of the equation $\frac{1}{1+\frac{2}{x+3}}=4-0 . \overline{5}$ be $x=\frac{A}{B}$, a reduced fraction, where A and B denote integers and $A<B$. Determine the smallest positive integer n such that $\frac{A+n}{B}$ is an integer.
E) The region satisfying the inequality $|x-2007|+|y+2008|<A$ contains 1985 lattice points, i.e. points with integer coordinates. Determine the integer A for which this statement is true.
F) Four students enter a room. Each student has a cell phone. The students put all their cell phones into the same pile. When the students leave, each student is given a cell phone. What is the probability that none of the students will receive their own cell phone?

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 SOLUTION KEY

Round 1

A) Let x denote the increase in radius or height. Then $\pi(10+x)^{2}(4)=\pi(10)^{2}(4+x)$
$\rightarrow 4\left(100+20 x+x^{2}\right)=400+100 x \rightarrow 4 x^{2}-20 x=4 x(x-5)=0 \rightarrow x=\underline{\mathbf{5}}$
B) The regions consist of two congruent circles, the intersection of a sphere and two parallel planes.

$$
\text { Area }=2 \pi(2 \sqrt{5})^{2}=\underline{40 \pi}
$$

C) Method \#1 [using V(frustum) $\left.=\frac{\pi h}{3}\left(R^{2}+R r+r^{2}\right)\right]$
$r=5, R=8$ and $h=4$
Thus, $\mathrm{V}=\frac{1}{3} \pi(4)[25+40+64]=\underline{\mathbf{1 7 2 \pi}}$

Method \#2 [V(cone $\left._{1}\right)$ - V $\left(\right.$ cone $\left._{2}\right)$]
(Note: $\triangle A P Q \sim \triangle A O B \rightarrow \frac{x}{x+h}=\frac{r}{R} \rightarrow x=\frac{h r}{R-r}$)

$\frac{x}{x+4}=\frac{5}{8} \rightarrow x=\frac{20}{3}$
$\mathrm{V}\left(\right.$ cone $\left._{1}\right)=\frac{1}{3} \pi(8)^{2}\left(4+\frac{20}{3}\right)=\frac{2048 \pi}{9} \quad \mathrm{~V}\left(\right.$ cone $\left._{2}\right)=\frac{1}{3} \pi(5)^{2}\left(\frac{20}{3}\right)=\frac{500 \pi}{9}$

$$
\text { Therefore, } V(\text { frustum })=\frac{1548 \pi}{9}=\underline{\mathbf{1 7 2 \pi}}
$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 SOLUTION KEY

Round 2

A) $b^{2}=(11 \sqrt{3})^{2}-(7 \sqrt{7})^{2}=363-343=20 \rightarrow b=\mathbf{2} \sqrt{5}$
B) Let $\overline{A B}$ (drawn $\perp \overrightarrow{P C}$) represent the distance between the angle bisectors.
Clearly, $\Delta \mathrm{s} P S C$ and $R Q A$ are both isosceles and congruent. Thus, x must be 7 and since $\overline{A B}$ is the leg in an isosceles right triangle with hypotenuse $7, A B=C D=\frac{7 \sqrt{2}}{2}$

Thus, $21(28)=35(C E) \rightarrow C E=16.8$
Applying the Pythagorean Theorem to right triangle $A C E, A E=22.4 \rightarrow D E=2.4$ and to right triangle $C D E, C D^{2}=16.8^{2}+2.4^{2}=288 \rightarrow C D=\underline{\mathbf{1 2} \sqrt{\mathbf{2}}}$

Alternative: Drop perpendiculars from D to $\overline{A C}$ and $\overline{B C}$.
Let $A D=4 x$ and $D B=3 x . A B=7 x=35 \rightarrow x=5, B D=15, A D=20$
Since $\triangle D G B \sim \triangle A F D \sim \triangle A C B \sim 3-4-5$ right triangle,
$(D G, G B)=(12,9)$ and $(D F, F A)=(12,16)$ and $F D G C$ is a 12×12 square! Therefore, $C D=\underline{\mathbf{1 2} \sqrt{2}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 SOLUTION KEY

Round 3

A) $a(a-2 x)=b(b+2 x) \rightarrow a^{2}-b^{2}=2 b x+2 a x \rightarrow(a+b)(a-b)=2 x(a+b) \rightarrow x=\frac{\boldsymbol{a} \boldsymbol{-} \boldsymbol{b}}{\mathbf{2}}$
B) Solving for y in terms of $x \rightarrow y=65-3 x$. Clearly, for $x=1 \ldots 21, y$ will be a positive integer. Thus, there are $\underline{\mathbf{2 1}}$ solutions.
C) Assume 12 eggs cost $x \phi$ and $16 \operatorname{cost}(x+32) \phi$ or $\frac{3}{4}(x+32) \phi /$ dozen

Then $\frac{3}{4}(x+32)=x-4 \rightarrow 3 x+96=4 x-16 \rightarrow x=\underline{\mathbf{1 1 2} \text { or } \$ 1.12}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 SOLUTION KEY

Round 4

A) $\frac{2 \frac{7}{16}-3 \frac{3}{4}}{5 \frac{5}{8}+7 \frac{1}{2}}=\frac{\left(\frac{39}{16}-\frac{15}{4}\right) 16}{\left(\frac{45}{8}+\frac{15}{2}\right) 16}=\frac{39-60}{90+120}=\frac{-21}{210}=-\frac{\mathbf{1}}{\underline{\mathbf{1 0}}}$ or $-\underline{\mathbf{0 . 1}}$
B) Multiplying by the $\mathrm{LCD}=(x+1)(x-1),(x-3)(x-1)-2 x+8-3 x-3=0$ $\rightarrow x^{2}-4 x+3-5 x+5=0 \rightarrow x^{2}-9 x+8=(x-1)(x-8)=0 \rightarrow x=\underline{\mathbf{8}} \quad(x=1$ is extraneous)
C) $\frac{(n+1)!(2 n-2)!}{(n-1)!(2 n)!}=\frac{(n+1) n(n-1)!(2 n-2)!}{(n-1)!(2 n)(2 n-1)(2 n-2)!}=\frac{(n+1) n}{(2 n)(2 n-1)}=\frac{2}{7} \rightarrow 7 n^{2}+7 n=8 n^{2}-4 n$ $\rightarrow n^{2}-11 n=n(n-11)=0 \rightarrow n=\underline{\mathbf{1 1}}$

Here's the original question C (nixed by the proofreaders):
For extremely large positive values of n, the following fraction approaches a fixed value L. Compute L.

$$
\frac{(n+1)!(2 n-2)!}{(n-1)!(2 n)!}
$$

You might want to try your hand at solving this question before peeking at the solution below.
$\frac{(n+1)!(2 n-2)!}{(n-1)!(2 n)!}=\frac{(n+1) n(n-1)!(2 n-2)!}{(n-1)!(2 n)(2 n-1)(2 n-2)!}=\frac{n^{2}+n}{4 n^{2}-2 n}$
Dividing numerator and denominator by n^{2}, we have $\frac{1+\frac{1}{n}}{4+\frac{2}{n}}$
As n takes on extremely large positive values (i.e. approaches infinity), the fractional terms in the numerator and denominator each approach zero and the overall fraction approaches $\mathbf{1 / 4}$ or $\mathbf{0 . 2 5}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 SOLUTION KEY

Round 5

A) The region consists of 2 right triangles

$$
\text { Area }=\frac{1}{2} \cdot 1 \cdot 1+\frac{1}{2} \cdot 2 \cdot 2=\underline{\mathbf{2 . 5}}
$$

B) The quotient on the left-hand side is comprised of 5 terms, one of which is never negative.
Having an even number of factors that are negative guarantees a positive product.
Allowing the numerator (but not the denominator) to be zero guarantees a zero product.

$\rightarrow \underline{x<-5 \text { or } x \geq 4 \text { or } x=3}$
C) $\frac{1}{x} \leq \frac{1}{x-1}-\frac{1}{2} \rightarrow \frac{1}{x-1}-\frac{1}{x}-\frac{1}{2} \geq 0 \rightarrow \frac{2 x-2(x-1)-x(x-1)}{2 x(x-1)} \geq 0 \rightarrow \frac{2+x-x^{2}}{2 x(x-1)} \geq 0$
$\rightarrow \frac{(2-x)(1+x)}{2 x(x-1)} \geq 0 \rightarrow \frac{(x-2)(x+1)}{2 x(x-1)} \leq 0$
The critical values for this quotient are $-1,0,1$ and 2 .

Thus, the solution intervals are: $-1 \leq x<0$ or $1<x \leq 2$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 SOLUTION KEY

Round 6

A) $\frac{22}{7}-\frac{314}{100}=\frac{22(100)-314(7)}{7(100)}=\frac{2200-2198}{700}=\frac{1}{350} \rightarrow n=\underline{\mathbf{3 5 0}}$
B) $\frac{3 A+5 B}{4 B-2 A}=2 \rightarrow 8 B-4 A=3 A+5 B \rightarrow \frac{B}{A}=\frac{7}{3}$ Then $\frac{2 A-3 B}{A}=2-3\left(\frac{B}{A}\right)=2-7=\underline{\mathbf{- 5}}$
C) The delivery period of 30 days consists of 4 full weeks and 2 days.

The day of the week on which the first of the month falls is the same as the $29^{\text {th }}$ day.
To maximize the cost, the $29^{\text {th }}$ day must fall on a Sunday, adding a cost of $75 ¢$ for the last two days. (The other possible costs for the last two days are: $45 ¢, 50 ¢$ and $70 ¢$)
Thus, the maximum cost will be $4[5(25)+20+50]+75=\underline{\mathbf{8 5 5}}$
If the first day of the month falls on a Sunday, then the first Thursday is the $\underline{5}^{\text {th }} . \rightarrow \underline{(\mathbf{5}, \mathbf{8 5 5})}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 SOLUTION KEY

Team Round

A) Consider the diagram at the right.

The volume of the cone is given by $\frac{1}{3} \pi\left(\frac{s}{2}\right)^{2}\left(\frac{s}{2} \sqrt{3}\right)=\frac{\sqrt{3} \pi s^{3}}{24}$
The volume of the sphere is given by $\frac{4}{3} \pi\left(\frac{s \sqrt{3}}{6}\right)^{3}=\frac{\sqrt{3} \pi s^{3}}{54}$
The difference is $5 \pi \sqrt{3} s^{3}\left(\frac{1}{24}-\frac{1}{54}\right)=5 \pi \sqrt{3} s^{3}\left(\frac{54-24}{24(54)}\right)=\underline{\frac{\mathbf{5 \pi} \sqrt{\mathbf{3}}}{\mathbf{2 1 6}} \mathbf{s}^{\mathbf{3}}}$

B) Examining right triangles in which the lengths of the hypotenuse and long leg differ by 1 :

\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	Per	Factors
3	4	5	12	$3(4)$
5	12	13	30	$5(6)$
7	24	25	56	$7(8)$
9	40	41	90	$9(10)$

Apparently, the perimeter is given by $a(a+1)$
We want a as large as possible with $a(a+1) \leq 1000 a=31 \rightarrow 992, a=32 \rightarrow 1056$
Thus, $a=31$ and $31^{2}+b^{2}=(b+1)^{2} \rightarrow 961=2 b+1 \rightarrow b=480$ and the sides are $\underline{(\mathbf{3 1}, \mathbf{4 8 0}, \mathbf{4 8 1})}$
C) Let n denote the number of pencils originally bought for 30ϕ.

Let p denote the cost of a single pencil(in cents).
Then $n p=30$ and $(n+3)(p-27 / 12)=30$.
$(n+3)(p-2.25)=n p-2.25 n+3 p-6.75=30$
Cancelling, $-2.25 n+3 p-6.75=0 \rightarrow-9 n+12 p-27=0 \rightarrow-3 n+4 p-9=0 \rightarrow p=\frac{9+3 n}{4}$
Substituting, $n p=n \cdot \frac{9+3 n}{4}=30 \rightarrow 3 n^{2}+9 n-120=0 \rightarrow(3 n+24)(n-5)=0$
$\rightarrow n=5$ and $p=6$
which means 8 pencils could be bought for the lower price of $6-9 / 4=3.75$ cents $\rightarrow \underline{(8,3.75})$
D) $\frac{1}{1+\frac{2}{x+3}}=4-0 . \overline{5} \rightarrow \frac{x+3}{x+5}=4-\frac{5}{9}=\frac{31}{9} \rightarrow 9 x+27=31 x+155 \rightarrow x=\frac{-128}{22}=\frac{-64}{11}$

Note: $\frac{64}{-11}$ is disallowed since $A<B$. If $\frac{-64+n}{11}$ must be an integer and $n>0$, the minimum possible value of n is $\underline{9}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2007 SOLUTION KEY

Team Round - continued

E) The regions bounded by $|x-2007|+|y+2008|=A$ and $|x|+|y|=A$ contain the same number of lattice points.
The latter is a square (diamond) with vertices at $(\pm A, 0)$ and $(0, \pm A)$. The diagram at the right illustrates the lattice points for $A=3$. The number of lattice points is $2(1+3)+5=13$.

Method \#1: Pattern appears to be:
Considering the first A consecutive odd integers, the number of lattice points is found by doubling the sum of the first $A-1$ odd integers, and
 then adding the A th.
$2[1+3+5+\ldots+(2 A-3)]+(2 A-1)=1985$
Applying sum formulas for arithmetic sequences,
$2\left[\frac{A-1}{2}(1+2 k-3)\right]+(2 A-1)=1985 \rightarrow(A-1)(2 A-2)+(2 A-1)$
$\rightarrow 2(A-1)^{2}+2 A-1=2 A^{2}-2 A-1984=0 \rightarrow A^{2}-A-992=0 \rightarrow A(A-1)=992 \rightarrow A=\underline{\mathbf{3 2}}$

Method \#2

Construct a chart for small values of A and look for a pattern.
Note that the number of lattice pts $=2 A^{2}-2 A+1$.
\#LPs
1 2(1)(0)+1
$5 \quad 2(2)(1)+1$
13 2(3)(2)+1
25 2(4)(3)+1
$41 \quad 2(5)(4)+1$
$2 A(A-1)+1$
F) With 4 people (A, B, C, D) and 4 phones (a, b, c, d), examine the $4!=24$ permutations of $a b c d$.
Any that start with a are eliminated.
Starting with b, bactl, badc, beatl, bcda, bdac, bde $\rightarrow 3$ total mismatches
Starting with c, $d \boldsymbol{d}, c a d b, c \boldsymbol{b} d \boldsymbol{d}, c \boldsymbol{b} d t, c d a b, c d b a \rightarrow 3$ total mismatches
Starting with d, dabc, dacb,dbac,dbeat,dcab,dcba>3 total mismatches
Thus, for 4 phones, there are $3(3)=9$ total mismatches $\rightarrow P($ total mismatch $)=9 / 24=\frac{\mathbf{3}}{\mathbf{8}}$

