MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 ROUND 1 ANALYTIC GEOMETRY: ANYTHING

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) The equation of a circle of radius 4 is $\left(x^{2}+4 x\right)+\left(y^{2}-2 y\right)+F=0$.

Determine the value of F.
B) The arch of a bridge is in the form of half an ellipse, with a horizontal major axis. The span of the bridge is 12 meters and the height of the arch above water is 4 meters at its center. How high (in meters) above the water is the arch at a point on the water 2 meters from the end of the arch? Your answer must be exact.

C) A parabola has a focal chord with endpoints at $(2,0)$ and $(2,6)$ and opens to the right. The point $(2.5, y)$, where $y>0$, lies on this parabola.
Compute all possible values of y.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 4 - JANUARY 2008

ROUND 2 ALG 1: FACTORING AND/OR EQUATIONS INVOLVING FACTORING

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Find all values of \underline{a} so the expression $4 x^{2}+8 a x+25$ is a perfect trinomial square.
B) For some integer values of \underline{a}, the expression $x^{2}+a x-15$ may be written as the product of two binomials with integer coefficients.
For which of these values of \underline{a}, does the expression $a x^{2}+98$ have two distinct linear factors with integer coefficients?

Note: A linear factor has the form $m x+b$, where $m \neq 0$.
C) Find all real values of x for which $\frac{2 x^{2}+x-1}{x^{2}-x-2}=1-2 x$

ANSWERS

A) \qquad
B) \qquad
C) \qquad ***** NO CALCULATORS ON THIS ROUND ******
A) Solve for x over $0 \leq x<2 \pi$: $\quad 2(\cos x-\sin x)=1-\tan x$
B) Solve for x over $0 \leq x<360^{\circ}$. $\sin 140^{\circ} \cos 220^{\circ}=\frac{\cos x}{\sec 60^{\circ}}$
C) There are n values of x, where $0^{\circ} \leq x<360^{\circ}$ that satisfy: $\tan ^{2} x \cdot \sec ^{2} x+1=\tan ^{2} x+\sec ^{2} x$ Let S denote the sum of these solutions. Compute $S-n$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 ROUND 4 ALG 2: QUADRATIC EQUATIONS

ANSWERS

A) Equation: \qquad
B) \qquad
C) \qquad
A) Find a quadratic equation of the form $x^{2}+B x+C=0$, where B and C are integers, given that $2-i \sqrt{5}$ is one of its roots.
B) The sum of the squares of two positive real numbers L and W is 81 . Twice the larger number is 9 more than the smaller number. Determine $|L-W|$.
C) $x^{2}+A x+B=0$ and $x^{2}+p x+q=0$ are different equations.

Each of the roots of the equation $x^{2}+A x+B=0$ are 3 more than twice the corresponding roots of $x^{2}+p x+q=0$. If $A: B=-2: 3$, compute the ratio of $p: q$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 ROUND 5 GEOMETRY: SIMILARITY OF POLYGONS

ANSWERS

A) \qquad , \qquad)
B) \qquad
C) \qquad
A) $\triangle A B C$ is a right triangle with legs $A B=3$ and $B C=4 . \triangle D E F \sim \triangle A B C$ and $D F=6$. Determine the ordered pair $(D E, E F)$.
B) A line parallel to the short sides of a 12×25 rectangle subdivides the rectangle into two similar noncongruent rectangles. Determine the area of the larger of these two rectangles.
C) If $P Q R S$ is a 3×4 rectangle as illustrated, $\overline{A B} \perp \overline{B C}$ and $R C=3$, compute the perimeter of $\triangle A B C$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008
 ROUND 6 ALG 1: ANYTHING

ANSWERS

A) \qquad
B) \qquad
, \qquad)
C) \qquad , \qquad)
A) Earl is five years older than his favorite cousin. Thirteen years ago, he was twice his cousin's age. How old is Earl now?
B) Line L_{1} has an x-intercept of 5 and a y-intercept of -2. Find the coordinates of the point on L_{1} that is closest to $P(-1,15)$.
C) Mixture \#1 is 3 parts alcohol and 1 part water.

Mixture \#2 is 2 parts alcohol and 1 part water.
x quarts of mixture $\# 1$ and y quarts of mixture $\# 2$ are combined to make at least 6 gallons of a mixture that is 5 parts alcohol and 2 parts water.
Determine the ordered pair (x, y) for which $x+y$ is a minimum.
Note: 4 quarts $=1$ gallon

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 ROUND 7 TEAM QUESTIONS

ANSWERS

A) \qquad D) \qquad
B) \qquad E) \qquad
C) \qquad F) \qquad
A) In a plane, the locus of a curve is defined by the parametric equations

$$
x=9 \sec (t) \text { and } y=7 \tan (t), \text { where } 90^{\circ}<t<180^{\circ}
$$

Express x directly as a simplified function of y.
B) Determine all ordered pairs (x, y) of positive integers, where

$$
x>y \text { and } x^{3}-x^{2} y-x y^{2}+y^{3}=1024
$$

C) Determine the sum of all values of x over $\left[0,360^{\circ}\right)$ for which

$$
\cot ^{2}\left(270^{\circ}-2 x\right)-\csc \left(90^{\circ}+2 x\right)-1=0
$$

D) Determine all ordered pairs of integers (n, x) for which $n>3$ and $\sum_{k=3}^{k=n}(x k+3)=45$.
E) In trapezoid $A B C D$ (with bases $\overline{A B}$ and $\overline{C D}$), $A B=14, B C=10, C D=35$ and $A D=17$. Compute the area of $\triangle B E C$.

F) Let a, b and c be positive integers and a and b be consecutive.

If $a+b+c=21$, determine the sum of all distinct products $a b c$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 SOLUTION KEY

Round 1

A) Completing the square, $\left(x^{2}+4 x \underline{+\mathbf{4}}\right)+\left(y^{2}-2 y \underline{\mathbf{1}}\right)=-F+4+1=5-F=r^{2}=16 \rightarrow F=\underline{\mathbf{- 1 1}}$
B) The equation of the ellipse is $\frac{x^{2}}{6^{2}}+\frac{y^{2}}{4}=1$
$\rightarrow x^{2}+9 y^{2}=36$
On the right side, 2 meters from the end of the arch is located at $(4,0)$. Substituting,

$$
y^{2}=\frac{36-16}{9} \rightarrow y=\frac{\mathbf{2 \sqrt { 5 }}}{\mathbf{3}}
$$

C) The focus of the parabola is located at $(2,3)$.

The focal width $=4|a|=6 \rightarrow a=+3 / 2$.
Since the focal chord is vertical, the equation of the parabola has the form $(y-k)^{2}=4 a(x-h)$, where (h, k) are the coordinates of the vertex.
$a=+3 / 2 \rightarrow$ the vertex is at $(1 / 2,3)$.
Thus, the equation of the parabola is $(y-3)^{2}=+6\left(x-\frac{1}{2}\right)$
Substituting $x=2.5,(y-3)^{2}=12 . y>0 \rightarrow y=\mathbf{3}+\mathbf{2} \sqrt{\mathbf{3}}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 SOLUTION KEY

Round 2

A) $4 x^{2}+8 a x+25=(2 x \pm 5)^{2}=4 x^{2} \pm 20 x+25 \rightarrow 8 a= \pm 20 \rightarrow a= \pm \frac{\mathbf{5}}{\mathbf{2}}$
B) -15 factors as (1)(-15), (-1)(15), (3)(-5), (-3)(5), $\rightarrow a= \pm 14$ or ± 2

The corresponding factorizations are: $14\left(x^{2}+7\right),-14\left(x^{2}-7\right), 2\left(x^{2}+49\right)$ and $-2\left(x^{2}-49\right)$ and only the latter has two distinct linear factors over the integers. Thus, $a=\underline{\mathbf{- 2}}$
C) $\frac{2 x^{2}+x-1}{x^{2}-x-2}=1-2 x \rightarrow \frac{(2 x-1)(x+1)}{(x-2)(x+1)}=1-2 x$

Clearly, $x=-1$ is not a solution. Canceling, $\frac{(2 x-1)}{(x-2)}=1-2 x \rightarrow 2 x-1=(x-2)(1-2 x)$
$2 x-1=x-2 x^{2}-2+4 x \rightarrow 2 x^{2}-3 x+1=(x-1)(2 x-1)=0 \rightarrow x=\mathbf{1}, \frac{\mathbf{1}}{\mathbf{2}}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 SOLUTION KEY

Round 3

A) Potential extraneous solutions: $(\cos x=0) x \neq \pi / 2+n \pi$
$2(\cos x-\sin x)=1-\tan x=1-\frac{\sin x}{\cos x} \rightarrow 2 \cos x(\cos x-\sin x)=\cos x-\sin x$
$(\cos x-\sin x)(2 \cos x-1)=0$
$\rightarrow \cos x=\sin x \rightarrow x=\pi / 4,5 \pi / 4$
$\rightarrow \cos x=1 / 2 \rightarrow x=\underline{\pi / 3,5 \pi / \mathbf{3}}$
B) $\sin 140^{\circ} \cos 220^{\circ}=\frac{\cos x}{\sec 60^{\circ}} \rightarrow$
$\cos x=2 \sin 140^{\circ} \cos 220^{\circ}=\sin (A-B)+\sin (A+B)=2 \sin A \cos B$
$\rightarrow A=140, B=220$
Thus, $\cos x=\sin (-80)+\sin 360=-\sin (80)=-\cos (10)$
Thus, x denotes a related value of 10° in quadrant 2 or $3 \rightarrow x=\underline{\mathbf{7 0}^{\circ}, \mathbf{1 9 0}^{\circ}}$
C) $\tan ^{2} x \cdot \sec ^{2} x-\tan ^{2} x-\sec ^{2} x+1=0 \rightarrow \tan ^{2} x\left(\sec ^{2} x-1\right)-\left(\sec ^{2} x-1\right)=\left(\tan ^{2} x-1\right)\left(\sec ^{2} x-1\right)=0$
$\rightarrow \tan x= \pm 1 \rightarrow x=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$ or sec $x= \pm 1 \rightarrow x=0^{\circ}, 180^{\circ}$
$\rightarrow \mathbf{9 0 0}-6=\underline{\mathbf{8 9 4}}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 SOLUTION KEY

Round 4

A) Integer coefficients \rightarrow roots must occur in conjugate pairs.

Thus, the two roots are $2 \pm i \sqrt{5} \rightarrow$ sum $=4$ and product $=9 \rightarrow \underline{\boldsymbol{x}^{2}-4 \boldsymbol{x}+9=0}$
B) Let L denote the larger of the positive numbers.
$\left\{\begin{array}{l}L^{2}+W^{2}=81 \\ 2 L=9+\mathrm{W}\end{array}\right.$
$\rightarrow L^{2}+(2 L-9)^{2}=81 \rightarrow 5 L^{2}-36 L=L(5 L-36)=0 \rightarrow L=\frac{36}{5}$ and $W=\frac{27}{5} \rightarrow|L-W|=\frac{\mathbf{9}}{\mathbf{5}}$
C) Assume the roots of the original quadratic are r_{1} and r_{2} and the corresponding roots of the new equation are s_{1} and s_{2}. Then $s_{1}=2 r_{1}+3$ and $s_{2}=2 r_{2}+3$

According to the root/coefficient relationship for quadratics, $p=-\left(r_{1}+r_{2}\right)$ and $q=r_{1} r_{2}$.
Also $A=-\left(s_{1}+s_{2}\right)=-\left(2\left(r_{1}+r_{2}\right)+6\right)=\underline{\mathbf{2} \boldsymbol{p}-\mathbf{6}}$ or $\underline{\mathbf{2}(\boldsymbol{p}-\mathbf{3})}$
$B=s_{1} s_{2}=\left(2 r_{1}+3\right)\left(2 r_{2}+3\right)=4 r_{2} r_{2}+6\left(r_{1}+r_{2}\right)+9=\underline{\mathbf{9}-6 p+4 q}$
Continuing, $\frac{2 p-6}{9-6 p+4 q}=\frac{-2}{3} \rightarrow 6 p-18=18-12 p+8 q \rightarrow 6 p=8 q \rightarrow \frac{p}{q}=\underline{\mathbf{4}: \mathbf{3}}$
Note: If $A=6$ and $B=9$, then the first equation, $x^{2}+6 x+9=0$ has a double root of -3 . Since $2(-3)+3=-3$, the second equation would be identical.
In the above solution, $A=6-2 p=6 \rightarrow p=0$ and $B=9-6 p+4 q=9 \rightarrow q=0$
In this situation the ratio of $p: q$ would be indeterminant. Thus, it was necessary to require that the equations be different.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 SOLUTION KEY

Round 5

A) $A C=5 \rightarrow$ the scale factor is $6 / 5$, the legs of $\triangle D E F$ are slightly longer than the legs in $\triangle A B C$.

Specifically, $\frac{6}{5}(3,4)=\left(\frac{\mathbf{1 8}}{\mathbf{5}}, \frac{\mathbf{2 4}}{\mathbf{5}}\right)$
B) If you don't want to experiment with various subdivisions of 25 , you could approach the problem algebraically. Suppose the side of length 25 is divided into lengths of x and $(25-x)$.
Then the ratio of corresponding sides (short to long) is:
$\frac{12}{x}=\frac{25-x}{12} \rightarrow x^{2}-25 x+144=(x-9)(x-16)=0$
$\rightarrow x=9$ or 16 (Since x must be greater than 12, 9 is rejected.)

$x=16 \rightarrow$ area $=16(12)=\underline{\mathbf{1 9 2}}$.
C) $Q R C$ is a 3-4-5 right triangle
$\triangle P B Q \sim \triangle Q R C$ and the scale factor is $\frac{3}{5}$
$\rightarrow B Q=\frac{3}{5}(3)=\frac{9}{5}$ and $B P=\frac{3}{5}(4)=\frac{12}{5}$
$\triangle A S P \sim \triangle Q R C$ and the scale factor is $\frac{4}{3}$
$\rightarrow A S=\frac{4}{3}(4)=\frac{16}{5}$ and $A P=\frac{4}{3}(5)=\frac{20}{3}$

Thus, the perimeter of $\triangle A B C$ is $8+\frac{21}{5}+\frac{36}{3}+3=23+4.2=\underline{\mathbf{2 7 . 2}}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 SOLUTION KEY

Round 6

Now Then(13yrsago)
A) Earl x $x-13 \quad \rightarrow x-13=2(x-18)=2 x-36 \rightarrow x=\underline{\mathbf{2 3}}$

Cousin

$$
x-5 \quad x-18
$$

B) The equation of L_{1} is $2 \mathrm{x}-5 \mathrm{y}=10$. The point of L_{1} closest to $P(-1,15)$ is the foot of the perpendicular drawn from P to L_{1}. Since perpendicular lines have negative reciprocal slopes, the equation of a perpendicular line to L_{1} is of the form $5 x+2 y=c$. Substituting $x=-1$ and y $=15$, we can determine the value of c for which the perpendicular passes through point P.
Thus, $c=25$. The solution of the system $\left\{\begin{array}{l}2 x-5 y=10 \\ 5 x+2 y=25\end{array}\right.$ is $\underline{\mathbf{(5 , 0})}$.
C) Alcohol: $\frac{3}{4} x+\frac{2}{3} y=\frac{5}{7}(x+y)$ and $x+y \geq 24$

Clearing fractions $(\mathrm{LCM}=84), 63 x+56 y=60 x+60 y \rightarrow 3 x=4 y$ or $y=\frac{3}{4} x$

$$
x+\frac{3}{4} x \geq 24 \rightarrow 7 x \geq 96 \rightarrow x>13 \rightarrow x=16 \rightarrow(\underline{\mathbf{1 6}, \mathbf{1 2})}
$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 SOLUTION KEY

Team Round

A) $\frac{x^{2}}{81}=\sec ^{2} t$ and $\frac{y^{2}}{49}=\tan ^{2} t$

Since $1+\tan ^{2} x=\sec ^{2} x, \frac{x^{2}}{81}=\frac{y^{2}}{49}+1 \rightarrow x^{2}=\frac{81}{49}\left(y^{2}+49\right) \rightarrow x= \pm \frac{9}{7} \sqrt{y^{2}+49}$
However, since $90^{\circ}<t<180^{\circ}, \cos (t)<0 \rightarrow \sec (t)<0 \rightarrow x<0 \rightarrow x=-\frac{9}{7} \sqrt{y^{2}+\mathbf{4 9}}$ only
B) $x^{3}-x^{2} y-x y^{2}+y^{3}=x^{2}(x-y)-y^{2}(x-y)=\left(x^{2}-y^{2}\right)(x-y)=(x-y)^{2}(x+y)$ and

Here's a list of factors of 1024, where the first factor is a perfect square.

$$
1(1024), 4(256), 16(64), 64(16), 256(4), 1024(1)
$$

Since $x+y$ and $x-y$ have the same parity (both even or both odd), only the middle 4 case are considered.
Thus, $x-y=2,4,8$ or 16 and the corresponding values of $x+y=256,64,16$ or 4 respectively.
Adding, $2 x=258,68,24$ or $20 \rightarrow(x, y)=(\mathbf{1 2 9}, \mathbf{1 2 7}),(\mathbf{3 4}, \mathbf{3 0}),(\mathbf{1 2}, \mathbf{4})$
[$(10,-6)$ is rejected since both coordinates were required to be positive.]
C) The original equation is equivalent to: $\tan ^{2}(2 x)-\sec (2 x)-1=0$
$\rightarrow \sec ^{2}(2 \mathrm{x})-1-\sec (2 x)-1=\sec ^{2}(x)-\sec (2 x)-2=(\sec (2 x)-2)(\sec (2 x)+1)=0$
$\sec (2 x)=2 \rightarrow \cos (2 x)=1 / 2 \rightarrow 2 x= \pm 60^{\circ}+360 n \rightarrow x= \pm 30+180 n \rightarrow 30,210,150,330$
$\sec (2 x)=-1 \rightarrow \cos (2 x)=-1 \rightarrow 2 x=180+360 n \rightarrow x=90+180 n \rightarrow x=90,270$
The required sum is $30+90+150+210+270+330=\underline{\mathbf{1 0 8 0}^{\circ}}$
D) Expanding, $(3+4+5+\ldots+n) x+3(n-3+1)=45$
$\rightarrow\left(\frac{n(n+1)}{2}-3\right) x+3 n-6=45 \rightarrow\left(\frac{n^{2}+n-6}{2}\right) x=51-3 n \rightarrow(n+3)(n-2) x=6(17-n)$
$\rightarrow x=\frac{6(17-n)}{(n+3)(n-2)}$
A list provides us with integer solutions $\mathbf{(5 , 3)}$ and $\mathbf{(1 7 , 0)}$.
Here is a graph of this function - the graph has an open point at $(3,14)$, intersects the horizontal axis at $(17,0)$, drops slightly below the axis and then becomes asymptotic to the axis for $n>17$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2008 SOLUTION KEY

Team Round - continued
E) $\left\{\begin{array}{l}h^{2}=17^{2}-x^{2}=10^{2}-y^{2} \\ x+y+14=35\end{array} \rightarrow\left\{\begin{array}{l}x^{2}-y^{2}=189 \\ x+y=21\end{array}\right.\right.$
$\rightarrow 21(x-y)=189 \rightarrow x-y=9$
Adding, $2 x=30 \rightarrow(x, y)=(15,6)$
$\rightarrow h=8$
Thus, $\operatorname{Area}(A B C D)=\frac{1}{2} \cdot 8 \cdot(14+35)=196$
Now $\triangle A B E \sim \triangle C D E$ with sides in a $14: 35$ or 2:5 ratio \rightarrow their areas are in a $4: 25$ ratio

Triangles $A D E$ and $A B E$ with the same altitude from A and bases ($B E$ and $D E$) are
 in a $2: 5$ ratio must have areas in a $2: 5$ ratio.

A similar argument demonstrates that, although $\triangle B E C$ is not congruent to $\triangle A E D$, they do have the same area. Thus, the 4 triangles comprising the trapezoid have areas as indicated above. $49 k=196 \rightarrow k=4 \rightarrow$ area $(\triangle B E C)=\underline{40}$
F) Let $(a, b)=(x, x+1)$. Then $x=\frac{20-c}{2}$ and c must be even (and between 2 and 18 inclusive)
to insure that a, b and c are all positive integers.
$\rightarrow(c, a, b)=(2,9,10),(4,8,9),(6,7,8),(8,6,7),(10,5,6),(12,4,5),(14,3,4),(16,2,3),(18,1,2)$
$\rightarrow a b c=180,288,336,336,300,240,168,96,36$
\rightarrow sum $=\underline{1644}$

