MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 – JANUARY 2008 ROUND 1 ANALYTIC GEOMETRY: ANYTHING

ANSWERS

A) _	 	
B)	 	
C)		

A) The equation of a circle of radius 4 is $(x^2 + 4x) + (y^2 - 2y) + F = 0$. Determine the value of *F*.

B) The arch of a bridge is in the form of half an ellipse, with a horizontal major axis. The span of the bridge is 12 meters and the height of the arch above water is 4 meters at its center. How high (in meters) above the water is the arch at a point on the water 2 meters from the end of the arch? Your answer must be exact.

C) A parabola has a focal chord with endpoints at (2, 0) and (2, 6) and opens to the right. The point (2.5, y), where y > 0, lies on this parabola. <u>Compute</u> all possible values of *y*.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 – JANUARY 2008 ROUND 2 ALG 1: FACTORING AND/OR EQUATIONS INVOLVING FACTORING

ANSWERS

A) _	 	 	
B) _			
C)			

A) Find all values of <u>a</u> so the expression $4x^2 + 8ax + 25$ is a perfect trinomial square.

B) For some integer values of \underline{a} , the expression $x^2 + ax - 15$ may be written as the product of two binomials with integer coefficients. For which of these values of \underline{a} , does the expression $ax^2 + 98$ have two distinct linear factors with integer coefficients?

Note: A linear factor has the form mx + b, where $m \neq 0$.

C) Find all real values of x for which
$$\frac{2x^2 + x - 1}{x^2 - x - 2} = 1 - 2x$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 – JANUARY 2008 ROUND 3 TRIG: EQUATIONS WITH A REASONABLE NUMBER OF SOLUTIONS

ANSWERS

A) _____

B) _____

C) _____

***** NO CALCULATORS ON THIS ROUND *****

A) Solve for x over $0 \le x < 2\pi$: $2(\cos x - \sin x) = 1 - \tan x$

B) Solve for x over $0 \le x < 360^\circ$. $\sin 140^\circ \cos 220^\circ = \frac{\cos x}{\sec 60^\circ}$

C) There are *n* values of *x*, where $0^{\circ} \le x < 360^{\circ}$ that satisfy: $\tan^2 x \cdot \sec^2 x + 1 = \tan^2 x + \sec^2 x$ Let *S* denote the sum of these solutions. Compute *S* - *n*.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 – JANUARY 2008 ROUND 4 ALG 2: QUADRATIC EQUATIONS

ANSWERS

A)	Equation:	 	
B)		 	
C)			

A) Find a quadratic equation of the form $x^2 + Bx + C = 0$, where *B* and *C* are integers, given that $2-i\sqrt{5}$ is one of its roots.

B) The sum of the squares of two positive real numbers L and W is 81. Twice the larger number is 9 more than the smaller number. Determine |L - W|.

C) $x^2 + Ax + B = 0$ and $x^2 + px + q = 0$ are <u>different</u> equations. Each of the roots of the equation $x^2 + Ax + B = 0$ are 3 more than twice the corresponding roots of $x^2 + px + q = 0$. If A : B = -2 : 3, <u>compute</u> the ratio of p : q.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 – JANUARY 2008 ROUND 5 GEOMETRY: SIMILARITY OF POLYGONS

ANSWERS

A)	(,)
B) _		
C)		

A) $\triangle ABC$ is a right triangle with legs AB = 3 and BC = 4. $\triangle DEF \sim \triangle ABC$ and DF = 6. Determine the ordered pair (*DE*, *EF*).

B) A line parallel to the short sides of a 12 x 25 rectangle subdivides the rectangle into two similar noncongruent rectangles. Determine the area of the larger of these two rectangles.

C) If *PQRS* is a 3 x 4 rectangle as illustrated, $\overline{AB} \perp \overline{BC}$ and RC = 3, <u>compute</u> the perimeter of $\triangle ABC$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 – JANUARY 2008 ROUND 6 ALG 1: ANYTHING

ANSWERS

A)				
B)		(,)
C)	(,)

A) Earl is five years older than his favorite cousin. Thirteen years ago, he was twice his cousin's age. How old is Earl now?

B) Line L_1 has an *x*-intercept of 5 and a *y*-intercept of -2. Find the coordinates of the point on L_1 that is closest to P(-1, 15).

C) Mixture #1 is 3 parts alcohol and 1 part water. Mixture #2 is 2 parts alcohol and 1 part water. *x* quarts of mixture #1 and *y* quarts of mixture #2 are combined to make at least 6 gallons of a mixture that is 5 parts alcohol and 2 parts water. Determine the ordered pair (*x*, *y*) for which *x* + *y* is a minimum.

Note: 4 quarts = 1 gallon

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 – JANUARY 2008 ROUND 7 TEAM QUESTIONS

ANSWERS

A)	D)
B)	E)
C)	F)

A) In a plane, the locus of a curve is defined by the parametric equations

$$x = 9 \sec(t)$$
 and $y = 7 \tan(t)$, where $90^\circ < t < 180^\circ$

Express *x* directly as a simplified function of *y*.

B) Determine <u>all</u> ordered pairs (x, y) of positive integers, where

$$x > y$$
 and $x^3 - x^2y - xy^2 + y^3 = 1024$.

C) Determine the sum of all values of x over $[0, 360^\circ)$ for which

$$\cot^2(270^\circ - 2x) - \csc(90^\circ + 2x) - 1 = 0$$

- D) Determine <u>all</u> ordered pairs of integers (n, x) for which n > 3 and $\sum_{k=3}^{k=n} (xk+3) = 45$.
- E) In trapezoid *ABCD* (with bases \overline{AB} and \overline{CD}), AB = 14, BC = 10, CD = 35 and AD = 17. Compute the area of ΔBEC .

F) Let *a*, *b* and *c* be positive integers and *a* and *b* be consecutive. If a + b + c = 21, determine the sum of all distinct products *abc*.

Round 1

A) Completing the square, $(x^2 + 4x + 4) + (y^2 - 2y + 1) = -F + 4 + 1 = 5 - F = r^2 = 16 \rightarrow F = -11$ (0, 4) B) The equation of the ellipse is $\frac{x^2}{\epsilon^2} + \frac{y^2}{\epsilon} = 1$ $\rightarrow x^2 + 9y^2 = 36$ 4 h = ? On the right side, 2 meters from the end of the arch is located at (4, 0). Substituting, 6 2 4 $y^2 = \frac{36 - 16}{9} \Rightarrow y = \frac{2\sqrt{5}}{3}$ (4,0) (6, 0) (0, 0) span = 12

C) The focus of the parabola is located at (2, 3). The focal width = $4|a| = 6 \rightarrow a = +3/2$. Since the focal chord is vertical, the equation of the parabola has the form $(y-k)^2 = 4a(x-h)$, where (h, k) are the coordinates of the vertex. $a = +3/2 \rightarrow$ the vertex is at (1/2, 3).

Thus, the equation of the parabola is $(y-3)^2 = +6(x-\frac{1}{2})$ Substituting x = 2.5, $(y-3)^2 = 12$. $y > 0 \rightarrow y = 3 + 2\sqrt{3}$

Round 2

- A) $4x^2 + 8ax + 25 = (2x \pm 5)^2 = 4x^2 \pm 20x + 25 \rightarrow 8a = \pm 20 \rightarrow a = \pm \frac{5}{2}$
- B) -15 factors as (1)(-15), (-1)(15), (3)(-5), (-3)(5), $\rightarrow a = \pm 14 \text{ or } \pm 2$ The corresponding factorizations are: $14(x^2 + 7)$, $-14(x^2 - 7)$, $2(x^2 + 49)$ and $-2(x^2 - 49)$ and only the latter has two distinct linear factors over the integers. Thus, $a = \underline{-2}$

C)
$$\frac{2x^2 + x - 1}{x^2 - x - 2} = 1 - 2x \rightarrow \frac{(2x - 1)(x + 1)}{(x - 2)(x + 1)} = 1 - 2x$$

Clearly, $x = -1$ is not a solution. Canceling, $\frac{(2x - 1)}{(x - 2)} = 1 - 2x \rightarrow 2x - 1 = (x - 2)(1 - 2x)$
$$2x - 1 = x - 2x^2 - 2 + 4x \rightarrow 2x^2 - 3x + 1 = (x - 1)(2x - 1) = 0 \rightarrow x = 1, \frac{1}{2}$$

Round 3

A) Potential extraneous solutions: $(\cos x = 0) x \neq \pi/2 + n\pi$

$$2(\cos x - \sin x) = 1 - \tan x = 1 - \frac{\sin x}{\cos x} \rightarrow 2\cos x(\cos x - \sin x) = \cos x - \sin x$$
$$(\cos x - \sin x)(2\cos x - 1) = 0$$
$$\Rightarrow \cos x = \sin x \Rightarrow x = \frac{\pi/4, 5\pi/4}{\pi/3, 5\pi/3}$$

- B) $\sin 140^{\circ} \cos 220^{\circ} = \frac{\cos x}{\sec 60^{\circ}} \rightarrow$ $\cos x = 2\sin 140^{\circ} \cos 220^{\circ} = \sin(A-B) + \sin(A+B) = 2\sin A \cos B$ $\Rightarrow A = 140, B = 220$ Thus, $\cos x = \sin(-80) + \sin 360 = -\sin(80) = -\cos(10)$ Thus, x denotes a related value of 10° in quadrant 2 or 3 $\Rightarrow x = 170^{\circ}, 190^{\circ}$
- C) $\tan^2 x \cdot \sec^2 x \tan^2 x \sec^2 x + 1 = 0 \rightarrow \tan^2 x (\sec^2 x 1) (\sec^2 x 1) = (\tan^2 x 1)(\sec^2 x 1) = 0$ $\Rightarrow \tan x = \pm 1 \Rightarrow x = 45^\circ, 135^\circ, 225^\circ, 315^\circ \text{ or sec } x = \pm 1 \Rightarrow x = 0^\circ, 180^\circ$ $\Rightarrow 900 - 6 = \underline{894}$

Round 4

- A) Integer coefficients \rightarrow roots must occur in conjugate pairs. Thus, the two roots are $2 \pm i\sqrt{5} \rightarrow \text{sum} = 4$ and product $= 9 \rightarrow \underline{x}^2 - 4x + 9 = 0$
- B) Let *L* denote the larger of the positive numbers.

$$\begin{cases} L^2 + W^2 = 81 \\ 2L = 9 + W \end{cases}$$

$$\Rightarrow L^2 + (2L - 9)^2 = 81 \Rightarrow 5L^2 - 36L = L(5L - 36) = 0 \Rightarrow L = \frac{36}{5} \text{ and } W = \frac{27}{5} \Rightarrow |L - W| = \frac{9}{5}$$

C) Assume the roots of the original quadratic are r_1 and r_2 and the corresponding roots of the new equation are s_1 and s_2 . Then $s_1 = 2r_1 + 3$ and $s_2 = 2r_2 + 3$

According to the root/coefficient relationship for quadratics, $p = -(r_1 + r_2)$ and $q = r_1r_2$. Also $A = -(s_1 + s_2) = -(2(r_1 + r_2) + 6) = 2p - 6$ or 2(p - 3) $B = s_1s_2 = (2r_1 + 3)(2r_2 + 3) = 4r_2r_2 + 6(r_1 + r_2) + 9 = 9 - 6p + 4q$ Continuing, $\frac{2p - 6}{9 - 6p + 4q} = \frac{-2}{3} \rightarrow 6p - 18 = 18 - 12p + 8q \rightarrow 6p = 8q \rightarrow \frac{p}{q} = 4:3$ Note: If A = 6 and B = 9, then the first equation, $x^2 + 6x + 9 = 0$ has a double root of -3. Since 2(-3) + 3 = -3, the second equation would be identical. In the above solution, $A = 6 - 2p = 6 \rightarrow p = 0$ and $B = 9 - 6p + 4q = 9 \rightarrow q = 0$

In the above solution, $A = 6 - 2p = 6 \rightarrow p = 0$ and $B = 9 - 6p + 4q = 9 \rightarrow q = 0$ In this situation the ratio of p : q would be indeterminant. Thus, it was necessary to require that the equations be different.

Round 5

- A) $AC = 5 \rightarrow$ the scale factor is 6/5, the legs of $\triangle DEF$ are slightly longer than the legs in $\triangle ABC$. Specifically, $\frac{6}{5}(3,4) = \left(\frac{18}{5}, \frac{24}{5}\right)$
- B) If you don't want to experiment with various subdivisions of 25, you could approach the problem algebraically. Suppose the side of length 25 is divided into lengths of x and (25 - x). Then the ratio of corresponding sides (short to long) is: $\frac{12}{x} = \frac{25 - x}{12} \rightarrow x^2 - 25x + 144 = (x - 9)(x - 16) = 0$ $\Rightarrow x = 9 \text{ or } 16 \text{ (Since x must be greater than } 12, 9 \text{ is rejected.)}$

С

C) *QRC* is a 3-4-5 right triangle.

Round 6

Now Then(13yrsago)

- A) Earl $x x-13 \Rightarrow x-13 = 2(x-18) = 2x-36 \Rightarrow x = 23$ Cousin x-5 x-18
- B) The equation of L_1 is 2x 5y = 10. The point of L_1 closest to P(-1, 15) is the foot of the perpendicular drawn from P to L_1 . Since perpendicular lines have negative reciprocal slopes, the equation of a perpendicular line to L_1 is of the form 5x + 2y = c. Substituting x = -1 and y = 15, we can determine the value of c for which the perpendicular passes through point P. Thus, c = 25. The solution of the system $\begin{cases} 2x 5y = 10 \\ 5x + 2y = 25 \end{cases}$ is (5, 0).

C) Alcohol: $\frac{3}{4}x + \frac{2}{3}y = \frac{5}{7}(x+y)$ and $x+y \ge 24$

Clearing fractions (LCM = 84), $63x + 56y = 60x + 60y \rightarrow 3x = 4y$ or $y = \frac{3}{4}x$

$$x + \frac{3}{4}x \ge 24 \rightarrow 7x \ge 96 \rightarrow x > 13 \rightarrow x = 16 \rightarrow (16, 12)$$

Team Round

A)
$$\frac{x^2}{81} = \sec^2 t$$
 and $\frac{y^2}{49} = \tan^2 t$
Since $1 + \tan^2 x = \sec^2 x$, $\frac{x^2}{81} = \frac{y^2}{49} + 1 \Rightarrow x^2 = \frac{81}{49}(y^2 + 49) \Rightarrow x = \pm \frac{9}{7}\sqrt{y^2 + 49}$
However, since $90^\circ < t < 180^\circ$, $\cos(t) < 0 \Rightarrow \sec(t) < 0 \Rightarrow x < 0 \Rightarrow x = -\frac{9}{7}\sqrt{y^2 + 49}$ only
B) $x^3 - x^2y - xy^2 + y^3 = x^2(x - y) - y^2(x - y) = (x^2 - y^2)(x - y) = (x - y)^2(x + y)$ and
Here's a list of factors of 1024, where the first factor is a perfect square.
 $1(1024), 4(256), 16(64), 64(16), 256(4), 1024(1)$
Since $x + y$ and $x - y$ have the same parity (both even or both odd),
only the middle 4 case are considered.

Thus, x - y = 2, 4, 8 or 16 and the corresponding values of x + y = 256, 64, 16 or 4 respectively. Adding, 2x = 258, 68, 24 or $20 \rightarrow (x, y) = (129, 127), (34, 30), (12, 4)$ [(10, -6) is rejected since both coordinates were required to be positive.]

C) The original equation is equivalent to: $tan^{2}(2x) - sec(2x) - 1 = 0$

→ $\sec^2(2x) - 1 - \sec(2x) - 1 = \sec^2(x) - \sec(2x) - 2 = (\sec(2x) - 2)(\sec(2x) + 1) = 0$ $\sec(2x) = 2 \rightarrow \cos(2x) = \frac{1}{2} \rightarrow 2x = \pm 60^\circ + 360n \rightarrow x = \pm 30 + 180n \rightarrow 30, 210, 150, 330$ $\sec(2x) = -1 \rightarrow \cos(2x) = -1 \rightarrow 2x = 180 + 360n \rightarrow x = 90 + 180n \rightarrow x = 90, 270$ The required sum is $30 + 90 + 150 + 210 + 270 + 330 = 1080^\circ$

D) Expanding,
$$(3 + 4 + 5 + ... + n)x + 3(n - 3 + 1) = 45$$

 $\Rightarrow \left(\frac{n(n+1)}{2} - 3\right)x + 3n - 6 = 45 \Rightarrow \left(\frac{n^2 + n - 6}{2}\right)x = 51 - 3n \Rightarrow (n + 3)(n - 2)x = 6(17 - n)$
 $\Rightarrow x = \frac{6(17 - n)}{(n + 3)(n - 2)}$

A list provides us with integer solutions (5, 3) and (17, 0). Here is a graph of this function – the graph has an open point at (3, 14), intersects the horizontal axis at (17, 0), drops slightly below the axis and then becomes asymptotic to the axis for n > 17.

A similar argument demonstrates that, although ΔBEC is not congruent to ΔAED , they do have the same area. Thus, the 4 triangles comprising the trapezoid have areas as indicated above. $49k = 196 \Rightarrow k = 4 \Rightarrow \operatorname{area}(\Delta BEC) = \underline{40}$

F) Let (a, b) = (x, x + 1). Then $x = \frac{20 - c}{2}$ and c must be even (and between 2 and 18 inclusive) to insure that a, b and c are all positive integers. $\Rightarrow (c, a, b) = (2, 9, 10), (4, 8, 9), (6, 7, 8), (8, 6, 7), (10, 5, 6), (12, 4, 5), (14, 3, 4), (16, 2, 3), (18, 1, 2)$ $\Rightarrow abc = 180, 288, 336, \frac{336}{336}, 300, 240, 168, 96, 36$ $\Rightarrow sum = 1644$