MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 ROUND 1 ANALYTIC GEOMETRY: ANYTHING

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) The points $A(7, a)$ and $B(b, 1)$ lie on the hyperbola $x^{2}-y^{2}=24$.

Compute the largest possible value for the distance $A B$.
B) A parabolic arch has a span $(A B)$ of 12 units and a maximum height ($C D)$ of 8 units.

Find the height of the arch $\frac{1}{4}$ of the way across the span.

C) A circle of radius 5 is tangent to $x=3$ and $y=-2$. Let S be the sum of all possible x-intercepts. Compute S.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 4 - JANUARY 2009
 ROUND 2 ALG 1: FACTORING AND/OR EQUATIONS INVOLVING FACTORING

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Clearly $x=3$ is a solution of the equation $(2 x-1)(x+2)=25$. Find the non-integer solution.
B) Determine all values of x that satisfy $12 x^{5}-36 x^{3}=46 x^{4}$
C) Factor the following expression completely over the integers.

$$
72 x^{3}-4 x^{2}+9-32 x^{5}
$$

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 4 - JANUARY 2009
 ROUND 3 TRIG: EQUATIONS WITH A RESAONABLE NUMBER OF SOLUTIONS
 ANSWERS

A) \qquad
B) \qquad
C) \qquad ***** NO CALCULATORS ON THIS ROUND *****
A) Solve for x, where $0 \leq x<2 \pi$. Give exact answers in terms of π.

$$
3 \cos 2 x=2 \cos ^{2} x
$$

B) Solve for θ, where $0^{\circ} \leq \theta<360^{\circ}$: $(\sqrt{2} \cos \theta-\sqrt{2} \sin \theta)^{2}=3$
C) Solve for θ, where $0^{\circ} \leq \theta<360^{\circ}$: $\sqrt{3} \tan ^{2} \theta+\tan \theta=\sqrt{3} \tan \theta+\sec ^{2} \theta-\tan ^{2} \theta$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 ROUND 4 ALG 2: QUADRATIC EQUATIONS

ANSWERS

A) \qquad
B) \qquad
C) $y=$ \qquad
A) It is known that x is positive and that A and B have opposite signs.

Solve for x in terms of A and B :

$$
x^{2}-3 A^{2} B^{2}=2 A B x
$$

B) The quadratic expression $A x^{2}-4 x+B$ has a value of 9 when $x=-3$ and a value of -7 when $x=5$.
Determine the minimum value of this expression.
C) Given: $3 x^{2}-6 x+x y+4 y-2 y^{2}=0$

Determine all possible values of y in terms of x.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 ROUND 5 GEOMETRY: SIMILARITY OF POLYGONS

ANSWERS

A) \qquad
B) \qquad
C) \qquad : \qquad
A) Rectangle J contains all points (x, y) in the shaded region. What is the area of the rectangle that contains all the points $(2 x+3,6-2 y)$?

B) In rectangle $A B C D, E C=x, A B=13, A D=15$ and $\frac{\operatorname{Area}(\triangle D C E)}{\text { Area }(\triangle D F A)}=\frac{10}{9}$
(E is on $\overline{B C}$ and F is on $\overline{D E}$)
Compute x.

C) In isosceles triangle $A B C, \overline{D E}$ contains the centroid P of $\triangle A B C$ and is parallel to base $\overline{B C}$. D and E lie on $\overline{A B}$ and $\overline{A C}$, respectively. Find the simplified ratio of the area of $\triangle A D E$ to the area of trapezoid $D E C G$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009
 ROUND 6 ALG 1: ANYTHING

ANSWERS

A) \qquad
B) \qquad
C) $y=$ \qquad
A) Find the value(s) of x for which

$$
\sqrt{8^{4}+4^{6}+16^{3}+64^{2}} \cdot \sqrt{x^{2}}=\sqrt{64^{3}}
$$

B) At 2:00 the hour and minute hands of an analog clock form a 60° angle.

Between 2 and 3 o'clock, this happens again at exactly x minutes past 2 o'clock.
Determine the value of x. Express your answer as the ratio of two relatively prime integers.
C) Consider the following operations on real numbers: $\begin{aligned} & x \circ y=2 x-y \\ & \bar{x}=x^{2}\end{aligned}$

If $\overline{(x \circ y)}=\bar{x} \circ \bar{y}$, then find a simplified expression for y in terms of x.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 4 - JANUARY 2009
 ROUND 7 TEAM QUESTIONS

ANSWERS

A) \qquad D) \qquad
B) \qquad E) \qquad
C) \qquad F) \qquad
A) Find the length of the minor axis of the ellipse $2 x^{2}+3 x y+2 y^{2}=63$.

Note: This ellipse has been rotated 45° and its axes lie along the lines $y=x$ and $y=-x$.
B) Factor completely over the integers: $G^{4}+T^{4}-8\left(G^{2}+T^{2}-2\right)-2 G T\left(2 G^{2}+2 T^{2}-3 G T-8\right)$
C) One of the solutions of the equation $\sqrt{1+a \sin x}=-\cos x$ over $0^{\circ} \leq x<360^{\circ}$ is 150°. Determine the other solution(s).
D) The parabola $y=x^{2}$ intersects the line $y=7 x+13$ at points A and B.

Find the coordinates of the midpoint of $\overline{A B}$.
E) Given: $A B C D E$ is a regular pentagon, $A D=1$

Compute the perimeter of isosceles trapezoid $C E F G$.

F) If A is a positive integer, determine the largest possible value of x, given: $3-\frac{1}{\frac{1}{A}+\frac{1}{x}}=\frac{1}{3}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 ANSWERS

Round 1 Analytic Geometry: Anything
A) $6 \sqrt{5}$
B) 6
C) 12

Round 2 Alg1: Factoring

A) $-\frac{9}{2}$
B) $0,-\frac{2}{3}, \frac{9}{2}$
C) $(2 x+1)\left(4 x^{2}-2 x+1\right)(3+2 x)(3-2 x)$

- or equivalent - (exactly 4 factors required)

Round 3 Trig: Equations

A) $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
B) $105^{\circ}, 165^{\circ}, 285^{\circ}, 345^{\circ}$
C) $45^{\circ}, 150^{\circ}, 225^{\circ}, 330^{\circ}$

Round 4 Alg 2: Quadratic Equations
A) $-A B$
B) -16
C) $y=\frac{3 x}{2}, 2-x$
-or equivalent simplified fractions-
Round 5 Geometry: Similarity
A) 72
B) 9
C) $8: 9$

Round 6 Alg 1: Anything
A) ± 4
B) $\frac{240}{11}$
C) x

Team Round
A) $6 \sqrt{2}$
D) $\left(\frac{7}{2}, \frac{75}{2}\right)$
B) $(G-T-2)^{2}(G-T+2)^{2}$
E) $\frac{11-3 \sqrt{5}}{2}$
C) Other solutions: 180° only
F) 24

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Round 1

A) Substituting, $A(7, a): 49-a^{2}=24 \rightarrow a= \pm 5 B(b, 1): b^{2}-1=25 \rightarrow b= \pm 5$

The longest distance is between $A(7,-5)$ and $B(-5,1) A B=\sqrt{\left(7-^{-} 5\right)^{2}+(-5-1)^{2}}=\sqrt{180}=\underline{\mathbf{6} \sqrt{5}}$
B) Let $A(0,0), B(12,0)$ and $C(6,8)$. Then the equation of the arch is $y=x(12-x) \cdot c$, for some fudge-factor c to adjust the height.
Substituting, $8=6(12-6) \cdot c$ and $c=\frac{2}{9}$. The perpendicular segment that is a quarter of the way across the span connects $(3,0)$ and $(3, h)$. Thus, substituting, $h=\frac{2}{9} \cdot 3 \cdot(12-3)=\underline{\mathbf{6}}$
C) Unless the center of the circle is above $y=-2$, there would be no x-intercepts. Additionally, the center must be 5 units left or right of $x=3$, i.e. at $(-2,3)$ or $(8,3)$. When $y=0$,
$(x+2)^{2}+(y-3)^{2}=25 \rightarrow(x+2)^{2}=16 \rightarrow x=-6,2$
$(x-8)^{2}+(y-3)^{2}=25 \rightarrow(x-8)^{2}=16 \rightarrow x=4,12$
Thus, the required sum is $-6+2+4+12=\underline{\mathbf{1 2}}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Round 2

A) $(2 x-1)(x+2)=25 \rightarrow 2 x^{2}+3 x-27=0 \rightarrow(2 x+9)(x-3)=0 \rightarrow x=\underline{-\frac{9}{2}}$
B) $12 x^{5}-36 x^{3}=46 x^{4} \rightarrow 2 x^{3}\left(6 x^{2}-23 x-18\right)=0 \rightarrow 2 x^{3}(3 x+2)(2 x-9) \rightarrow x=\mathbf{0},-\frac{\mathbf{2}}{\mathbf{3}}, \frac{\mathbf{9}}{\mathbf{2}}$
C) $72 x^{3}-4 x^{2}+9-32 x^{5}=8 x^{3}\left(9-4 x^{2}\right)+\left(9-4 x^{2}\right)=\left(8 x^{3}+1\right)\left(9-4 x^{2}\right)$

As the sum of perfect cubes and the difference of perfect squares, this product factors to $\underline{(2 x+1)\left(4 x^{2}-2 x+1\right)(3+2 x)(3-2 x)}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Round 3

A) $3\left(2 \cos ^{2} x-1\right)=2 \cos ^{2} x \rightarrow 4 \cos ^{2} x=3 \rightarrow \cos x= \pm \frac{\sqrt{3}}{2} \rightarrow x=\frac{\boldsymbol{\pi}}{\mathbf{6}}, \frac{\mathbf{5} \boldsymbol{\pi}}{\mathbf{6}}, \frac{\mathbf{7 \pi}}{\mathbf{6}}, \frac{\mathbf{1 1 \pi}}{\mathbf{6}}$
B) $(\sqrt{2} \cos \theta-\sqrt{2} \sin \theta)^{2}=3 \rightarrow(\cos \theta-\sin \theta)^{2}=\frac{3}{2} \rightarrow 1-2 \sin \theta \cos \theta=\frac{3}{2}$
$\rightarrow \sin (2 \theta)=-0.5 \rightarrow 2 \theta=\left\{\begin{array}{l}210+360 n \\ 330+360 n\end{array} \rightarrow \theta=\left\{\begin{array}{l}105+180 n \\ 165+180 n\end{array}\right.\right.$
$n=0 \rightarrow \theta=\underline{\mathbf{1 0 5}^{\circ}, \mathbf{1 6 5}^{\circ}}$
$n=1 \rightarrow \theta=\underline{\mathbf{2 8 5}^{\circ}, \mathbf{3 4 5}^{\circ}}$
C) Since $\tan ^{2} \theta+1=\sec ^{2} \theta$, the original equation simplifies to $\sqrt{3} \tan ^{2} \theta+\tan \theta=\sqrt{3} \tan \theta+1$
$\rightarrow \sqrt{3} \tan ^{2} \theta-\sqrt{3} \tan \theta+\tan \theta-1=0 \rightarrow \sqrt{3}(\tan \theta-1)+(\tan \theta+1)=0$
$\rightarrow(\tan \theta-1)(\sqrt{3} \tan \theta+1)=0 \rightarrow \theta=\underline{\mathbf{4 5}^{\circ}, \mathbf{2 2 5}^{\circ}, \mathbf{1 5 0}^{\circ}, \mathbf{3 3 0}^{\circ}}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Round 4

A) $x^{2}-3 A^{2} B^{2}=2 A B x \rightarrow x^{2}-2 A B x-3 A^{2} B^{2}=(x-3 A B)(x+A B)=0$
$\rightarrow x=3 A B$ or $-A B$ Thus, $x=\underline{-\boldsymbol{A B}}$ only.
B) $\left\{\begin{array}{l}9=9 A+12+B \\ -7=25 A-20+B\end{array} \rightarrow-16=16 A-32 \rightarrow A=1\right.$ and $B=-12$

Thus, the expression $x^{2}-4 x-12$ is equivalent to $(x-2)^{2}-16$.
The minimum value of $\mathbf{- 1 6}$ occurs when $x=2$.
C) Re-arranging the terms of $3 x^{2}-6 x+x y+4 y-2 y^{2}=0$, we have $3 x^{2}+x y-2 y^{2}-2(3 x-2 y)=0$ $\rightarrow(3 x-2 y)(x+y)-2(3 x-2 y)=0$
$\rightarrow(3 x-2 y)(x+y-2)=0 \rightarrow 3 x-2 y=0$ or $x+y-2=0$
$\rightarrow y=\frac{\mathbf{3 x}}{\mathbf{2}}, \mathbf{2}-\boldsymbol{x}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Round 5

A) The area of the original rectangle J is 18 . Since $(2 x-3,6-2 y)=(2(x+1.5),-2(y-3))$

The original rectangle has been translated 1.5 units to the right and 3 units down. This has no effect on the area. However, the original rectangle has been dilated (stretched) by a factor of 2 in both the x-direction and y-direction (as well as reflected across the x-axis). So the new rectangle is similar to the original rectangle with 4 times the area $\rightarrow \underline{\mathbf{7 2}}$
B) $\mathrm{m} \angle 1=\mathrm{m} \angle 3$ and $\mathrm{m} \angle 2=\mathrm{m} \angle 4 \rightarrow \triangle E C D \sim \triangle D F A \rightarrow$
$\frac{x}{D F}=\frac{13}{A F}=\left(\frac{D E}{15}=\frac{\sqrt{10}}{3}\right)$
Cross multiplying, $D E=5 \sqrt{10}$ Using the Pythagorean theorem on
$\triangle E C D,(5 \sqrt{10})^{2}=250=x^{2}+169 \rightarrow x=\underline{\mathbf{9}}$
The following is an alternate algebraic solution:
From the proportion, $A F=\frac{13 \cdot 15}{D E}$ and $D F=\frac{15 x}{D E}$ Then:
$\frac{\frac{1}{2} \cdot 13 x}{\frac{1}{2} D F \cdot A F}=\frac{10}{9} \rightarrow \frac{13 x}{\frac{13 \cdot 15^{2} \cdot x}{D E^{2}}}=\frac{D E^{2}}{15^{2}}=\frac{10}{9} \rightarrow D E^{2}=250$

But, applying the Pythagorean Theorem to $\triangle D E C, D E^{2}=x^{2}+13^{2} \rightarrow x^{2}=81 \rightarrow x=\underline{\mathbf{9}}$
The following is a trigonometric solution: Let $\theta=\mathrm{m} \angle 2=\mathrm{m} \angle 4$.
Then: $A F=15 \cos (\theta), D F=15 \sin (\theta)$ and $x=E C=13 \tan (\theta)$
$\frac{\frac{1}{2} \cdot 13 \cdot(13 \tan \theta)}{\frac{1}{2} \cdot 15 \sin \theta \cdot 15 \cos \theta}=\frac{10}{9} \rightarrow \frac{13^{2}}{10 \cdot 5^{2}}=\cos ^{2} \theta$
Finally, $\tan ^{2} \theta=\sec ^{2} \theta-1 \rightarrow \tan ^{2} \theta=\frac{10 \cdot 5^{2}-13^{2}}{13^{2}}=\frac{81}{13^{2}} \rightarrow E C=\underline{\mathbf{9}}$
C) The altitude and median to the base of an isosceles triangle are one and the same. The centroid divides the median into segments whose lengths are
in a $2: 1$ ratio. $\overline{D E} \| \overline{B C} \rightarrow \triangle A D E \sim \triangle A B C \rightarrow D E: B C=2: 3$.
Then lengths are represented in the diagram at the right:
The bases of the trapezoid $D E C G$ are $D E=4 x$ and $G C=5 x$
$\frac{A(\triangle A D E)}{A(D E C G)}=\frac{\frac{1}{2} \cdot 4 x \cdot 2 h}{\frac{1}{2} \cdot h \cdot(4 x+5 x)}=\frac{8 x h}{9 x h}=\underline{\mathbf{8 : 9}}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Round 6

A) Each of the expressions $8^{2}, 4^{6}, 16^{3}$ and 64^{2} is equivalent to 2^{12}. Thus, we have:
$\sqrt{4 \cdot 2^{12}} \cdot \sqrt{x^{2}}=\sqrt{2^{14}} \cdot \sqrt{x^{2}}=2^{7} \cdot|x|=128|x|=8^{3} \rightarrow 2^{7}|x|=2^{9} \rightarrow|x|=4 \rightarrow x= \pm 4$
B) In 1 minute the minute hand travels through 6°.

In x minutes the minute hand travels through ($6 x)^{\circ}$.
The hour hand travels at $1 / 12$ the rate of the minute hand and, therefore travels through $(x / 2)^{\circ}$

From the diagram at the right, we see that:

$$
60+\frac{x}{2}+60=6 x
$$

$\rightarrow 240=11 x \rightarrow x=\underline{\frac{\mathbf{2 4 0}}{\mathbf{1 1}}}$
Note: A 60° is not formed again before 3:00. During the remainder of the hour, the angle between the hour and minute hand increases to 180° (when they point in diametrically opposite directions) and then decreases to 90° at 3:00.

C) $\overline{(x \circ y)}=\overline{2 x-y}=(2 x-y)^{2}$
$\bar{x} \circ \bar{y}=x^{2} \circ y^{2}=2 x^{2}-y^{2}$
Expanding and equating we have: $4 x^{2}-4 x y+y^{2}=2 x^{2}-y^{2}$
$\rightarrow 2 x^{2}+2 y^{2}-4 x y=0 \rightarrow 2\left(x^{2}-2 x y+y^{2}\right)=0$ or $2(x-y)^{2}=0$
$\rightarrow y=\underline{x}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Team Round

A) The center of the ellipse is at $(0,0)$.

The graph is symmetric with respect to:
$y=x$, since interchanging x and y does not affect the equation.
$y=-x$, since replacing x and $-y$ and y by $-x$ does not affect the equation.
So the minor axis lies along one of these lines.
Replacing y by x, we have: $2 x^{2}+3 x^{2}+2 x^{2}=63 \rightarrow x^{2}=9 \rightarrow x= \pm 3$
Replacing y by $-x$, we have: $2 x^{2}-3 x^{2}+2 x^{2}=63$
$\rightarrow x^{2}=63 \rightarrow x= \pm 3 \sqrt{7}$
Since $3 \sqrt{7}>3$, the endpoints of the minor axis are $(-3,3)$ and $(3,3)$ and its length is $6 \sqrt{2}$.

Notes for future contests:

The general $2^{\text {nd }}$ degree equation is $A x^{2}+B x y+C x^{2}+D x+E y+F=0$.
This equation normally graphs as a circle, a parabola, an ellipse or a hyperbola.
$B x y$ is a rotation term: If $B=0$, all axes of symmetry are parallel to either the $x-$ or y - axis. If $B \neq 0$, then $B^{2}-4 A C$ is called a discriminant.

$$
B^{2}-4 A C=\left\{\begin{array}{cc}
<0 & \text { ellipse } \\
>0 & \text { hyperbola } \\
=0 & \text { parabola }
\end{array}\right.
$$

Possible degenerate cases
$B^{2}-4 A C$
no graph: $(x-3)^{2}+(y+2)^{2}=-1 \Leftrightarrow x^{2}+y^{2}-6 x+4 y+14=0$
-4
a single point: $(x-3)^{2}+(y+2)^{2}=0 \Leftrightarrow x^{2}+y^{2}-6 x+4 y+13=0 \quad-4$
a single line: $(x-y+1)^{2}=0 \Leftrightarrow x^{2}-2 x y+y^{2}+2 x-2 y+1=0$
a pair of parallel lines: $(x-y+1)(x-y-1)=0 \Leftrightarrow x^{2}-2 x y+y^{2}-1=0 \quad 0$
a pair of intersecting lines: $(x-y+1)(x+y+1)=0 \Leftrightarrow x^{2}-y^{2}+2 x+1=0 \quad+4$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Team Round - continued

B) Multiply out and re-arrange terms: $G^{4}+T^{4}-8 G^{2}-8 T^{2}+16-4 G^{3} T-4 G T^{3}+6 G^{2} T^{2}+16 G T$
$\rightarrow\left(G^{4}-4 G^{3} T+6 G^{2} T^{2}-4 G T^{3}+T^{4}\right)-8\left(G^{2}-2 G T+T^{2}\right)+16$
$=(G-T)^{4}-8(G-T)^{2}+16$
$=\left((G-T)^{2}-4\right)^{2}=(\boldsymbol{G}-\boldsymbol{T}-\mathbf{2})^{2}(\boldsymbol{G}-\boldsymbol{T}+\mathbf{2})^{2}$
C) Squaring both sides, $1+a \sin x=\cos ^{2} x \rightarrow a \sin x=\cos ^{2} x-1=-\sin ^{2} x$
$\rightarrow \sin x(\sin x+a)=0$
$\rightarrow \sin x=0 \rightarrow x=0^{\circ}, 180^{\circ}\left(180^{\circ}\right.$ checks, but 0° is extraneous)
or $\sin x=-\mathrm{a}$ and $x=150^{\circ} \rightarrow a=-1 / 2$
Check: $\sin x=1 / 2 \rightarrow x=30^{\circ}, 150^{\circ}$
30: $\sqrt{1+\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)}=\frac{\sqrt{3}}{2} \neq-\frac{\sqrt{3}}{2}$
150: $\sqrt{1+\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)}=\frac{\sqrt{3}}{2}=-\left(-\frac{\sqrt{3}}{2}\right)$
Thus, a must be $-\frac{1}{2}$ and the only additional solution is $\underline{\mathbf{1 8 0}^{\circ}}$.
D) If you tried finding the actual coordinates of points A and B, the computation quickly became painful. How can this be avoided?
Suppose $x^{2}=m \mathrm{x}+b$ and that r and s are the roots of $x^{2}-m x-b=0$. Then:
The coordinates of A, B and the midpoint M would be $\left(r, r^{2}\right),\left(s, s^{2}\right)$ and $\left(\frac{r+s}{2}, \frac{r^{2}+s^{2}}{2}\right)$.
From the root coefficient relationship, $r+\mathrm{s}=m$ and $r s=-b$.
Squaring and substituting, $m^{2}=r^{2}+2 r s+s^{2}=r^{2}-2 b+s^{2} \rightarrow r^{2}+s^{2}=m^{2}+2 b$
Thus, the midpoint M has coordinates $\left(\frac{m}{2}, \frac{m^{2}+2 b}{2}\right)$ and $m=7, b=13 \rightarrow\left(\frac{\mathbf{7}}{\mathbf{2}}, \frac{\mathbf{7 5}}{\mathbf{2}}\right)$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Team Round - continued

E) (*) $\frac{x}{1}=\frac{1-x}{x} \rightarrow(* *) x^{2}=1-x \rightarrow x^{2}+x-1=0$ Applying the quadratic formula, $x=\frac{-1+\sqrt{5}}{2}$ and $x^{2}=1-x=C G=E F=1-\left(\frac{-1+\sqrt{5}}{2}\right)=\frac{3-\sqrt{5}}{2}$
$F H=E B-(E F+H B)=1-2(1-x)=2 x-1$
$\triangle A F E \sim \triangle F H G \rightarrow \frac{A E}{A F}=\frac{F G}{F H} \rightarrow \frac{x}{1-x}=\frac{F G}{2 x-1}$
$\left({ }^{*}\right) \rightarrow \frac{1}{x}=\frac{F G}{2 x-1}$

or $F G=\frac{2 x-1}{x}=2-\frac{1}{x}=2-\left(\frac{\sqrt{5}+1}{2}\right)=\frac{3-\sqrt{5}}{2}=x^{2}$
Thus, the perimeter of the trapezoid CGFE is $1+2(1-x)+x^{2}$
$(* *) \rightarrow 1+2\left(x^{2}\right)+x^{2}=3 x^{2}+1=3\left(\frac{3-\sqrt{5}}{2}\right)+1=\frac{9-3 \sqrt{5}+2}{2}=\frac{\frac{\mathbf{1 1}-\mathbf{3} \sqrt{5}}{2}}{\underline{2}}$
Oops, I missed a much simpler way of showing that $F G=\boldsymbol{x}^{\mathbf{2}}$.
Note that $\triangle D F G \sim \triangle D A B \rightarrow \frac{D F}{D A}=\frac{F G}{A B} \rightarrow \frac{x}{1}=\frac{F G}{x} \rightarrow F G=x^{2}$.
[There are many occurrences of the constant ϕ (referred to as the golden ratio) in the regular pentagon. The value of ϕ is $\frac{1+\sqrt{5}}{2} \approx 1.61803 \cdots$. The value of x above is $\frac{1}{\phi}$. You can read about this amazing constant in many outstanding books on mathematical topics, e.g. chapter 15 of The Loom of God - Mathematical Tapestries at the Edge of Time by Clifford A. Pickover (a writer for both Discover and OMNI magazines).]

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Team Round - continued
F) $3-\frac{1}{\frac{1}{A}+\frac{1}{x}}=\frac{1}{3} \rightarrow \frac{8}{3}=\frac{1}{\frac{1}{A}+\frac{1}{x}}$
$\rightarrow \frac{8}{3}=\frac{A x}{x+A} \rightarrow 8 x+8 A=3 A x$
$\rightarrow 8 A=x(3 A-8) \rightarrow x=\frac{8 A}{3 A-8}=\frac{8}{3-\frac{8}{A}}$
$A=1,2,3,45,6, \ldots \rightarrow x=-8 / 5,-8, \underline{\mathbf{2 4}}, 8,40 / 7,24 / 5 \ldots$
Alternate solution:
After getting $x=\frac{8 A}{3 A-8}$. If x is an integer then so is $3 x$.
Since $3 x=\frac{24 A}{3 A-8}$, by long division, $3 x=8+\frac{64}{3 A-8}$
Clearly, the values of $3 x$ increase until the fractional component on the right hand side becomes negative, i.e. when $A<3$, and thereafter they decrease. $A=3 \rightarrow 3 x=8+\frac{64}{1}=72 \rightarrow x=\underline{\mathbf{2 4}}$.

