MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2009 ROUND 1 COMPLEX NUMBERS (No Trig)

***** NO CALCULATORS IN THIS ROUND *****

ANSWERS

A) \qquad
B) \qquad
C) \qquad
Note: $i=\sqrt{-1}$
A) Simplify completely: $\frac{1+2 i+3 i^{2}+4 i^{3}}{1-2 i+3 i^{2}-4 i^{3}}$
B) Given: $(3+3 i)^{40}=r^{n}$, where r and n are both integers Determine the smallest possible value of the sum $r+n$.
C) If $\sqrt{-40-9 i}=A+B i$, compute $\left(\frac{A}{B}\right)^{2}$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2009
 ROUND 2 ALGEBRA 1: ANYTHING

***** NO CALCULATORS IN THIS ROUND *****
ANSWERS
A) \qquad
B) \qquad
C) \qquad
A) Find 4 consecutive odd integers whose sum is 213 more than the largest of these integers.
B) If $x+y=3$ and $x y=-10$, find the largest possible value of $\frac{x}{y}$.
C) A train travels 150 miles in w hours. If the rate of the train were increased by $x \mathrm{mph}$, the train would arrive at its destination in 2 less hours. Find x in terms of w.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2009
 ROUND 3 PLANE GEOMETRY: AREAS OF RECTILINEAR FIGURES

> ***** NO CALCULATORS IN THIS ROUND *****

ANSWERS

A) \qquad
B) \qquad units ${ }^{2}$
C) \qquad units
A) The area of $\triangle P Q R$ is 45 square units.

The areas of $\triangle P Q S$ and $\triangle P S R$ are unequal. Determine the smaller of the two areas.

B) Rectangle $A B C D$ has an area of 500 square units. E and F are midpoints of two adjacent sides. Determine the area of the larger of the two regions inside $A B C D$ created by $\overline{E F}$.

C) Given: quadrilateral $A B C D$ with perpendicular diagonals and $A B=13, B C=15, B D=52, A C=14$
To the nearest integer, what is the perimeter of $\triangle A D E$?

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2009
 ROUND 4 ALG 1: FACTORING AND ITS APPLICATIONS
 ***** NO CALCULATORS IN THIS ROUND *****

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Solve for $x: \quad \frac{x^{2}-10 x+12}{10 x-x^{2}-28}=\frac{1}{3}$
B) Solve for x : $\quad 5 x^{2}+4 x-x^{3}-20=0$
C) The polynomial $x^{24}-x^{8}-256 x^{16}+256$ can be written as the product of N binomial factors of the form $\left(x^{a} \pm b\right)$, where a and b are positive integers. Determine the maximum value of N.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2009
 ROUND 5 TRIG: FUNCTIONS OF SPECIAL ANGLES

***** NO CALCULATORS IN THIS ROUND *****

ANSWERS

A) \qquad , \qquad , \qquad)
B) \qquad
C) \qquad
A) In simplest form, $\left(\tan 240^{\circ}+\tan 405^{\circ}\right)^{3}=A+B \sqrt{C}$. Determine the ordered triple (A, B, C).
B) For the purpose of this question, suppose special angles denote angles belonging to the 30° family, 45° family, 60° family or the quadrantal family $\left(0^{\circ}+90 k\right)$.
Compute $\tan (x)$ given that $2 \tan (x)=3 \cot (x)-1$ and x is not a special angle.
C) In $\triangle A B C, \mathrm{~m} \angle C=\mathrm{m} \angle D=90^{\circ}, A B=4$, $\mathrm{m} \angle B A C=30^{\circ}$ and $B C=E C$. Find $B D$ in simplified radical form.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2009
 ROUND 6 PLANE GEOMETRY: ANGLES, TRIANGLES AND PARALLELS

***** NO CALCULATORS IN THIS ROUND *****
ANSWERS
A) \qquad
B) \qquad
C) \qquad -
A) The measures of the vertex and base angles of an isosceles triangle are in a $4: 3$ ratio.

If the vertex angle is the larger of these two angles, compute the measure of an exterior angle at the base.
B) A regular polygon has 740 diagonals.

How many degrees in an exterior angle of this polygon?
C) $\overrightarrow{C D} \| \overleftrightarrow{E F}$ and $\overleftrightarrow{A B}$ is a transversal intersecting $\overleftrightarrow{C D}$ and $\overleftrightarrow{E F}$ in points M and N respectively.
P is a point between the parallel lines such that

$$
\begin{aligned}
& m \angle N M P=3 m \angle P M D \\
& m \angle M N P=4 m \angle P N F
\end{aligned}
$$

If $m \angle A M D=(7 x-40)^{\circ}$ and $m \angle M N F=(5 x)^{\circ}$, find $m \angle P$.

***** CALCULATORS ARE PERMITTED IN THIS ROUND ***** ANSWERS
A) \qquad D) \qquad
B) \qquad E) \qquad
C) \qquad F) \qquad
A) Given: $z=1-\sqrt{3} i \quad$ Compute: $\left|\sqrt{z} \cdot \sqrt[3]{z^{2}} \cdot \sqrt[6]{z^{5}}\right|$
B) A brick mason can do a job in 6 less hours than his apprentice. He and his apprentice work together for 4 hours. After the fourth hour, the apprentice works alone and finishes the remainder of the job in three hours. If the brick mason had been able to hire k apprentices, each of whom worked at the same rate as his original apprentice, and they all worked together with him from the start, the job would have been finished in a time of one hour or less. What is the minimum possible value of k ?
C) Point P is located in the interior of rectangle $A B C D$. (No diagram given.) $A D=52, P A=56, P B=25$ and $P C=33$. Compute $A B$.
D) Factor completely over the integers. $a^{4 x}-4 a^{3 x}+a^{2 x}+6 a^{x}$
E) $P Q R S$ is a rectangle.

Let A and B denote the areas of $\triangle P Q T$ and $\triangle S R T$ respectively.
If $\mathrm{m} \angle P T S=60^{\circ}$ and $P T=\tan (\angle T P S)=1$, compute $\frac{A}{B}$.
F) $A B C D E$ is a pentagon, $A B=B C=C D$ and $D E=E A$.

For integers d and $k, \mathrm{~m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle C=\mathrm{m} \angle D=d^{\circ}$ and $\mathrm{m} \angle E$ is $5 k^{\circ}$. Compute the largest possible value of $\frac{m \angle E A D}{m \angle D A B}$ that is less than 1 .

Round 1 Algebra 2: Complex Numbers (No Trig)
A) i
B) 38
C) $\frac{1}{81}$

Round 2 Algebra 1: Anything
A) $69,71,73,75$
B) $-\frac{2}{5}$ (or -0.4$)$
C) $\frac{300}{w(w-2)}$ or equivalent

Round 3 Plane Geometry: Area of Rectilinear Figures
A) 21
B) $437.5\left(\right.$ or $\left.\frac{875}{2}\right)$
C) 85

Round 4 Algebra 1: Factoring and its Applications
A) 2,8
B) $\pm 2,5$
C) 9

Round 5 Trig: Functions of Special Angles [Non-Calculator Round]
A) $(10,6,3)$
B) $-\frac{3}{2}$
C) $\sqrt{6}+\sqrt{2}$

Round 6 Plane Geometry: Angles, Triangles and Parallels
A) 126
B) 9
C) 40°

Team Round
A) 4
B) 13
C) $\frac{837}{13}$
D) $a^{x}\left(a^{x}-2\right)\left(a^{x}+1\right)\left(a^{x}-3\right)$
E) $2+\sqrt{3}$
F) $\frac{10}{13}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2009 SOLUTION KEY

Round 1

A) $\frac{1+2 i+3 i^{2}+4 i^{3}}{1-2 i+3 i^{2}-4 i^{3}}=\frac{1+2 i-3-4 i}{1-2 i-3+4 i}=\frac{-2-2 i}{-2+2 i}=\frac{1+i}{1-i} \cdot\left(\frac{1+i}{1+i}\right)=\frac{1+i^{2}+2 i}{1-i^{2}}=\frac{2 i}{2}=\underline{\boldsymbol{i}}$
B) $=3^{40}(1+i)^{40}=3^{40}(2 i)^{20}=3^{40} 2^{20} i^{20}=3^{40} 2^{20}(1)=9^{20} 2^{20}=18^{20} \rightarrow r+n=\underline{\mathbf{3 8}}$

Note: $18^{20}=\left(18^{2}\right)^{10}=324^{10}$. Such equivalent expressions produce larger values of $r+n$.
C) If $z=A+B i$, then $z^{2}=-40-9 i=A^{2}+2 A B i-B^{2}=\left(A^{2}-B^{2}\right)+2 A B i$. But, $|z|=\sqrt{A^{2}+B^{2}}$
and $\left|z^{2}\right|=\sqrt{(-40)^{2}+(-9)^{2}}=\sqrt{41^{2}}=41(9-40-41$ is a Pythagorean Triple.)
Since $|z|^{2}=\left|z^{2}\right|$, we have $A^{2}+B^{2}=41$.
Equating the real parts, the imaginary parts and the absolute values,
we have these three conditions: . $\left\{\begin{array}{l}\text { (1) } A^{2}-B^{2}=-40 \\ \text { (2) } 2 A B=-9 \\ \text { (3) } A^{2}+B^{2}=41\end{array}\right.$
(2) $\rightarrow A$ and B have opposite signs.
$\begin{aligned} & (1)+(3) \rightarrow 2 A^{2}=1,(3)-(1) \rightarrow 2 B^{2}=81 \text { and }(A, B)=\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{9}{\sqrt{2}}\right) \rightarrow\left(\frac{A}{B}\right)^{2}=\frac{\frac{1}{2}}{\frac{81}{2}}=\frac{\mathbf{1}}{\frac{\mathbf{8 1}}{2}}\end{aligned}$
Proof of the fact that for any complex number, $|z|^{2}=\left|z^{2}\right|$.
Let $z=x+y i$. Then $z^{2}=(x+y i)^{2}=x^{2}+2 x y i+y^{2} i^{2}=\left(x^{2}-y^{2}\right)+(2 x y) i$

$$
\begin{aligned}
|z|^{2} & =\left(\sqrt{x^{2}+y^{2}}\right)^{2}=x^{2}+y^{2} \\
\left|z^{2}\right| & =\sqrt{\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}}=\sqrt{\left(x^{4}-2 x^{2} y^{2}+y^{4}\right)+4 x^{2} y^{2}}=\sqrt{x^{4}+2 x^{2} y^{2}+y^{4}} \\
& =\sqrt{\left(x^{2}+y^{2}\right)^{2}}=x^{2}+y^{2} \quad \text { By the transitive property, }|z|^{2}=\left|z^{2}\right| .
\end{aligned}
$$

Round 2

A) Let the 4 numbers be $x, x+2, x+4$ and $x+6$. Then:
$4 x+12=213+x+6 \rightarrow 3 x=207 \rightarrow x=69 \rightarrow \underline{\mathbf{6 9 , 7 1}, 73,75}$
B) By solving $x(3-x)=-10$ or judicious guess and check, $(x, y)=(5,-2)$ or $(-5,2)$.

The possible values of $\frac{x}{y}$ are -2.5 or -0.4 . The larger value is $\mathbf{- \mathbf { 0 . 4 }}$.
C) Let R_{2} denote the new rate and R_{1} the original rate.

Since $R \cdot T=D$, we have $R_{2}=\frac{150}{w-2}$ and $R_{1}=\frac{150}{w}$ and $\frac{150}{w-2}=\frac{150}{w}+x$
Clearing fractions, $150 w=150(w-2)+x(w)(w-2) \rightarrow 150 w=150 w-300+x w^{2}-2 x w$
Canceling, we have $300=x w^{2}-2 x w=x\left(w^{2}-2 w\right) \rightarrow x=\frac{\mathbf{3 0 0}}{\boldsymbol{w}^{2}-\mathbf{2 w}}$ or $\frac{\mathbf{3 0 0}}{\boldsymbol{w}(\boldsymbol{w}-\mathbf{2)}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2009 SOLUTION KEY

Round 3

A) $Q R=15, Q S=8$ and $S R=7$
$\frac{1}{2}(15) h=45 \rightarrow h=6$
$\triangle P S R$ has the smaller area, $\frac{1}{2} \cdot 7 \cdot 6=\underline{\mathbf{2 1}}$
B) $\operatorname{Area}(\mathrm{I})=\frac{1}{2} x y, \operatorname{Area}(\mathrm{II})=4 x y-\frac{1}{2} x y=\frac{7}{2} x y$

Thus, regardless of the dimensions of the rectangle, region II has
an area $7 / 8$ that of the rectangle $\rightarrow \frac{7}{8}(500)=\underline{\mathbf{4 3 7 . 5}}$ or $\left(\frac{\mathbf{8 7 5}}{\mathbf{2}}\right)$
C) Noting special right triangles 5-12-13, 3(3-4-5) and 9-40-41, the problem is almost done.
$A D=\sqrt{1625}=5 \sqrt{65}$
65 is only slightly bigger than the perfect square 64 .
$8.1^{2}=65.61 \rightarrow \sqrt{65}<8.1 \rightarrow 5 \sqrt{65}<40.5$
Thus, to the nearest integer, the perimeter of $\triangle A D E$ is $\underline{\mathbf{8 5}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2009 SOLUTION KEY

Round 4

A) Cross multiplying, $\frac{x^{2}-10 x+12}{10 x-x^{2}-28}=\frac{1}{3} \rightarrow 3 x^{2}-30 x+36=10 x-x^{2}-28$
$\rightarrow 4 x^{2}-40 x+64=4\left(x^{2}-10 x+16\right)=4(x-2)(x-8)=0 \rightarrow x=\underline{\mathbf{2 , 8}}$
B) $5 x^{2}+4 x-x^{3}-20=\left(5 x^{2}-x^{3}\right)+(4 x-20)=x^{2}(5-x)-4(5-x)=0 \rightarrow\left(x^{2}-4\right)(5-x)=0$
$\rightarrow x= \pm 2,5$
C) $x^{24}-x^{8}-256 x^{16}+256=\left(x^{24}-256 x^{16}\right)-\left(x^{8}-256\right)=\left(x^{16}-1\right)\left(x^{8}-256\right)=$
$\left(x^{8}+1\right)\left(\boldsymbol{x}^{\mathbf{8}}-\mathbf{1}\right)\left(x^{4}+16\right)\left(\boldsymbol{x}^{\mathbf{4}}-\mathbf{1 6}\right)=\left(x^{8}+1\right)\left(x^{4}+1\right)\left(\boldsymbol{x}^{\mathbf{4}}-\mathbf{1}\right)\left(x^{4}+16\right)\left(x^{2}+4\right)\left(\boldsymbol{x}^{\mathbf{2}}-\mathbf{4}\right)=$ $\left(x^{8}+1\right)\left(x^{4}+1\right)\left(x^{2}+1\right)(x+1)(x-1)\left(x^{4}+16\right)\left(x^{2}+4\right)(x+2)(x-2) \rightarrow \boldsymbol{N}=\underline{\mathbf{9}}$

Round 5

A) $=(\sqrt{3}+1)^{3}=(\sqrt{3}+1)(\sqrt{3}+1)^{2}=(\sqrt{3}+1)(2 \sqrt{3}+4)=10+6 \sqrt{3} \rightarrow(A, B, C)=\underline{(\mathbf{1 0}, \mathbf{6}, \mathbf{3})}$
B) $2 \tan (x)=3 \cot (x)-1 \rightarrow 2 \tan ^{2}(x)=3-\tan (x)$
$\rightarrow 2 \tan ^{2}(x)+\tan (x)-3=(2 \tan x+3)(\tan x-1) \rightarrow \tan (x)=-\underline{\mathbf{3}}$
(1 is extraneous since x would be special, i.e. it would belong to the 45° family.)
C) $\mathrm{m} \angle C B A=60^{\circ}, B C=2, A C=2 \sqrt{3}$
$\mathrm{m} \angle C B E=\mathrm{m} \angle C E B=\mathrm{m} \angle A E D=45^{\circ}$
$B E=2 \sqrt{2}, A E=2 \sqrt{3}-2$ and
$D E=\frac{2 \sqrt{3}-2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2 \sqrt{6}-2 \sqrt{2}}{2}=\sqrt{6}-\sqrt{2}$
Thus, $B D=B E+E D=2 \sqrt{2}+(\sqrt{6}-\sqrt{2})=\underline{\sqrt{6}+\sqrt{2}}$
Alternate solution
In right $\triangle B A D, \frac{B D}{A B}=\cos (\angle D B A)$.
$\mathrm{m} \angle D B A=60^{\circ}-45^{\circ}=15^{\circ}$

Thus, $B D=4 \cos \left(15^{\circ}\right)=4 \cos \left(45^{\circ}-30^{\circ}\right)=4\left(\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}\right)$
$=4\left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right)=\underline{\sqrt{6}+\sqrt{2}}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2009 SOLUTION KEY

Round 6

A) $4 x+2(3 x)=180 \rightarrow x=18 \rightarrow$ base angle: $54^{\circ} \rightarrow$ exterior angle: $\underline{\mathbf{1 2 6}^{\circ}}$
B) $n(n-3) / 2=740 \rightarrow n(n-3)=1480$

Rather than trying to factor this quadratic by trial and error, guess at a value for n. If the result is too low, try a larger value of n; if the result is too high, try a smaller value of n.
$n=35 \rightarrow 35(32)=1120$ (too low)
$n=45 \rightarrow 45(42)=1890$ (too high)
Since 1120 is closer to 1480 , we'll start at 40 and step down until we find n.
$n=40 \rightarrow 40(37)=1480$ Bingo!
A regular polygon with 40 sides has exterior angle with $\left(\frac{360}{40}\right)=\underline{\boldsymbol{q}}^{\circ}$
C) Since $\angle A M D$ and $\angle M N F$ are corresponding angles of parallel lines,
we have $7 x-40=5 x \rightarrow x=20$
$m \angle A M D=100 \rightarrow a+b=80$ and $c+d=100$
$m \angle N M P=3 m \angle P M D \rightarrow b=3 a$
Thus, $(a, b)=(20,60)$
$m \angle M N P=4 m \angle P N F \rightarrow c=4 d$
Thus, $(c, d)=(80,20)$
Finally, $y=180-(b+c)=180-140=\underline{40}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2009 SOLUTION KEY

Team Round

A) $\left|\sqrt{z} \cdot \sqrt[3]{z^{2}} \cdot \sqrt[6]{z^{5}}\right|=\left|z^{\frac{1}{2}} \cdot z^{\frac{2}{3}} \cdot z^{\frac{5}{6}}\right|=\left|z^{\frac{1}{2}+\frac{2}{3}+\frac{5}{6}}\right|=\left|z^{\frac{6+8+10}{12}}\right|=\left|z^{2}\right|$ $z^{2}=1-2 \sqrt{3} i-3=-2-2 \sqrt{3} i \rightarrow\left|z^{2}\right|=\sqrt{4+12}=\underline{\mathbf{4}}$
B) Let $\frac{1}{x}$ denote the rate at which the brick mason works, i.e. the fraction of the job he does in one hour. Then $\frac{4}{x}+\frac{(4+3)}{x+6}=1 \rightarrow 4(x+6)+7 x=x^{2}+6 x \rightarrow x^{2}-5 x-24=(x-8)(x+3)=0$ $\rightarrow x=8$ Thus, the mason and apprentice take 8 hours and 14 hours respectively to complete the job. Assume a minimum of A apprentices are needed
$\frac{1}{8}(1)+A\left(\frac{1}{14}\right)(1) \geq 1 \rightarrow \frac{A}{14} \geq \frac{7}{8} \rightarrow A \geq \frac{98}{8}=12.25 \rightarrow A_{\min }=\underline{\mathbf{1 3}}$ [12 apprentices and 1 brick mason take T hours to finish

$$
\begin{aligned}
& \frac{1}{8} T+12\left(\frac{1}{14} T\right)=1 \rightarrow \frac{T}{8}+\frac{6 T}{7}=1 \rightarrow 7 T+48 T=56 \\
& \rightarrow T=56 / 55>1]
\end{aligned}
$$

C) $25^{2}+P D^{2}=33^{2}+56^{2} \rightarrow P D^{2}=3600$
$\rightarrow P D=60$ (Refer to note on Contest 1 Round 2.) Using Heron's formula, $\operatorname{Area}(\triangle P B C)=\sqrt{55(30)(22)(3)}=\sqrt{3^{2} \cdot 11^{2} \cdot 10^{2}}=330$
$\operatorname{Area}(\triangle P A D)=\sqrt{84(28)(32)(24)}=\sqrt{2^{12} \cdot 3^{2} \cdot 7^{2}}=1344$
Let $y=A B=C D$.

Area $($ rectangle $)=52 y=1674+\frac{1}{2} x y+\frac{1}{2} y(52-x)=1674+26 y \rightarrow 26 y=1674 \rightarrow y=A B=\frac{\mathbf{8 3 7}}{\mathbf{1 3}}$
D) Hoping to take advantage of a binomial of the form $\left(a^{x}+c\right)$, where c is a constant and thinking of Pascal's triangle:

$a^{4 x}-4 a^{3 x}+a^{2 x}+6 a^{x}=a^{4 x}-4 a^{3 x}+(6-5) a^{2 x}+(10-4) a^{x}+(1-5+4)$
Regrouping, we have $\left(a^{4 x}-4 a^{3 x}+6 a^{2 x}-4 a^{x}+1\right)-5\left(a^{2 x}+2 a^{x}+1\right)+4$
$=\left(a^{x}-1\right)^{4}-5\left(a^{x}-1\right)^{2}+4=\left(\left(a^{x}-1\right)^{2}-1\right)\left(\left(a^{x}-1\right)^{2}-4\right)$
$=\left(a^{x}-1+1\right)\left(a^{x}-1-1\right)\left(a^{x}-1+2\right)\left(a^{x}-1-2\right)=\boldsymbol{a}^{x}\left(\boldsymbol{a}^{x}-2\right)\left(\boldsymbol{a}^{x}+1\right)\left(\boldsymbol{a}^{x}-3\right)$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2009 SOLUTION KEY

Team Round - continued

E) From the diagram at the right, we see that $x=\sin 45$ and

$$
\begin{aligned}
& \triangle P T S: \frac{\sin 75}{1}=\frac{\sin 45}{S T} \rightarrow S T=\frac{\sin 45}{\sin 75} \quad \triangle T R S: \frac{y}{S T}=\sin 15 \\
& y=\frac{\sin 15 \cdot \sin 45}{\sin 75}=\frac{\sin 15 \cdot \sin 45}{\cos 15}=\tan 15 \sin 45 \\
& \frac{A}{B}=\frac{\frac{1}{2} P Q(x)}{\frac{1}{2} S R(y)}=\frac{x}{y}=\frac{\sin 45}{\tan 15 \sin 45}=\frac{1}{\tan 15}=\frac{1}{2-\sqrt{3}}=\underline{\mathbf{2}+\sqrt{\mathbf{3}}}
\end{aligned}
$$

F) $4 d+5 k=540 \rightarrow d=(540-5 k) / 4=(135-k)-k / 4$
k must be a multiple of 4 .
$k=4 t \rightarrow \mathrm{~m} \angle E=20 t$
$d=\mathrm{m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle C=\mathrm{m} \angle D=(540-20 t) / 4=135-5 t$
$\mathrm{m} \angle E A D=(180-20 t) / 2=90-10 t$
$\mathrm{m} \angle D A B=(135-5 t)-(90-10 t)=45+5 t$
$\frac{m \angle E A D}{m \angle D A B}=\frac{90-10 t}{45+5 t}=\frac{18-2 t}{9+t}$
Trying values of t we get the following ordered pairs:
$(1,8 / 5)(2,14 / 11)(3,1) \ldots$. This is a decreasing sequence and $t=4 \rightarrow \frac{\mathbf{1 0}}{\underline{\mathbf{1 3}}}$
Alternate solution \#1:
$5 d+5 k=540 \rightarrow d=\frac{540-5 k}{4}=135-\frac{5}{4} k$.
Since d must be an integer, k must be divisible by 4 .
Since $\mathrm{m} \angle E=5 k<180, k<36$. Therefore $k=4,8,12,16, \ldots, 32$.
The chart below indicates as k increases the required ratio decreases and the largest value less than 1 is highlighted.

k	d (m $\angle B A E)$	$\mathrm{m} \angle E$	$\mathrm{m} \angle 1$ ($\angle E A D)$	$\mathrm{m} \angle 2$ ($\angle D A B$)	Ratio
4	130	20	80	50	8/5
8	125	40	70	55	14/11
12	120	60	60	60	1
16	115	80	50	65	10/13

Alternate solution \#2:
$* * * * 4 d+5 k=540 \rightarrow d$ must be a multiple of 5. For $A D E$ to be a triangle, $0<5 k<180$ or $0<k<36$. Substituting in $* * * *$, we have $90<d<135$. By trial and error (and the fact that d is a multiple of 5), we test $130,125,120, \ldots$. These results are contained in the table above, referencing the second column as the key field.

