MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2010
 ROUND 1 COMPLEX NUMBERS (No Trig)

ANSWERS

A) \qquad
B) (\qquad , \qquad)
C) \qquad sq. units

**** NO CALCULATORS ON THIS ROUND ****

A) Compute: $\left(\frac{1-i}{1+i}\right)^{2010}$
B) Find the ordered pair (x, y) of real numbers that satisfy the equation

$$
\left(x^{2}-x-5\right)+i\left(y^{2}-7 y+3\right)=1-7 i
$$

and for which $y-x$ is as large as possible.
C) The complex numbers $(1+i),(-1+i),(-1-i)$ and $(1-i)$ form a square when plotted in the complex plane. If each of these numbers is multiplied by $(1+i)$, a new figure is formed. Compute the area of the new figure.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2010
 ROUND 2 ALGEBRA 1: ANYTHING

ANSWERS

A) \qquad feet
B) \qquad
C) $\$$ \qquad

**** NO CALCULATORS ON THIS ROUND ****

A) Mr. Slowski, the Comcast turtle, recently competed in the Reptilian Olympics.

He completed the quarter mile course in an hour.
At this rate, compute the distance (in feet) he could travel in 48 minutes.
[Recall: 1 mile $=5280$ feet]
B) When a two-digit number is divided by the sum of its digits, the quotient is 7 . When the same number is multiplied by the sum of its digits, the product is 567 . Find this number.
C) The list price for the home theater of my dreams is $\$ 6000$.

Over a three week period, Merchant A gave a discount of $16 \frac{2}{3} \%$, then $12 \frac{1}{2} \%$, and finally, 4%, each discount off the already discounted price of the previous week. Similarly, Merchant B gave a discount of 8%, then 10%, and finally, 15%. Unbelievably, these offers differ by less than 1%. Compute the positive difference between the discounted sales prices offered by these two vendors.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2010
 ROUND 3 PLANE GEOMETRY: AREAS OF RECTILINEAR FIGURES

ANSWERS
A) \qquad : \qquad
B) \qquad sq. units
C) \qquad

**** NO CALCULATORS ON THIS ROUND ****

A) $\overline{P Q}$ is a median in trapezoid $A B C D$.
$A B=12$ and $D C=20$.
Compute the ratio of the area of trapezoid $A B Q P$ to the area of trapezoid $P Q C D$.

B) The perimeter of rhombus $A B C D$ is 100 units. If $P Q=12$ units and $Q C=9$ units, compute the area of rhombus $A B C D$.

C) $A B C D$ is a square, $\overline{A B}$ is extended to F, $\overline{D F}$ intersects $\overline{B C}$ at $E, B E: E C=1: 2$ and the area of $\triangle B E F$ is 24 .
Compute the area of $A B C D$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2010
 ROUND 4 ALG 1: FACTORING AND ITS APPLICATIONS

ANSWERS

A) \qquad
B) \qquad
C) \qquad

**** NO CALCULATORS ON THIS ROUND ****

A) For positive integers a, b and $n, x^{2}-x-n=(x+a)(x-b)$.

If $n<50$, compute the largest possible value of n.
B) Let $P=280 x^{3} y^{2}$.

Compute Q, if the greatest common factor of P and Q is $28 x^{2} y^{2}$ and the least common multiple of P and Q is $3080 x^{3} y^{3} z$.
C) Factor completely. $\quad 8 A^{2}-7 A B+13 B^{2}-3 W^{2}-4 B^{2}-4 A^{2}+19 A B-13 W^{2}$

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2010
 ROUND 5 TRIG: FUNCTIONS OF SPECIAL ANGLES

ANSWERS

A) \qquad
B) \qquad
C) \qquad

**** NO CALCULATORS ON THIS ROUND ****

A) If possible, compute the exact value of $\frac{\cot \left(45^{\circ}\right)+2 \sin \left(210^{\circ}\right)}{1+\tan \left(22.5^{\circ}\right)}$; otherwise, specify the value as undefined.
B) Compute: $\left(\sin 510^{\circ} \cos 240^{\circ} \cot ^{3} 315^{\circ} \csc \frac{11 \pi}{6} \sec \left(\frac{-7 \pi}{3}\right)\right)^{5}$
C) Given: $A B C D$ is a rectangle,

$$
\begin{aligned}
& B E=1, D E=D F, C F=C B \\
& \overline{E F} \perp \overline{F B} \text { and } \mathrm{m} \angle 2=2 \cdot \mathrm{~m} \angle 1
\end{aligned}
$$

Compute $\cos (\angle B E D)$.

MASSACHUSETTS MATHEMATICS LEAGUE

 CONTEST 2 - NOVEMBER 2010

 CONTEST 2 - NOVEMBER 2010
 ROUND 6 PLANE GEOMETRY: ANGLES, TRIANGLES AND PARALLELS

ANSWERS

A) \qquad \circ
B) \qquad , \qquad)
C) \qquad

**** NO CALCULATORS ON THIS ROUND ****

A) Compute the degree measure of the larger of the vertical angles with vertex at P in the diagram at the right.

B) Solve for (x, y) given $A B=A C$.

C) In right triangle $A B C, \angle G F I, \angle H F I, \angle I H K, \angle I K H$ and $\angle J B K$ have measures as indicated in terms of x and $y, \mathrm{~m} \angle G D F=36^{\circ}$ and five perpendiculars to $\overline{B C}$ are marked.
If $\mathrm{m} \angle C A D=a$ and $\mathrm{m} \angle E D G=b$, compute $a+b$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2010
 ROUND 7 TEAM QUESTIONS
 ANSWERS

A) (\qquad , \qquad) D) (\qquad , \qquad , \qquad , \qquad
B) \qquad E) (\qquad
\qquad)
C) (\qquad , \qquad) F) \qquad
**** NO CALCULATORS ON THIS ROUND ****
A) Let $z=a+b i$. Compute the ordered pair (a, b), if $\left\{\begin{array}{l}\frac{1}{z}=\bar{z} \\ a+b=1.4 \text {. } \\ a>b\end{array}\right.$.
B) If $\frac{1}{2 x^{3}}-\frac{1}{x^{2}}-\frac{1}{2 x}+1=0$, find all possible values of $\left(x^{2}+1\right)^{2}$.
C) Given: $B P: C R: D S=4: 5: 2$; and $\overline{B P}, \overline{A Q}, \overline{C R}$ and $\overline{D S} \perp \stackrel{\text { sum }}{T V}$.

Compute the unique ordered pair (a, b) for which the following statement is true:
$\operatorname{Area}(A B C D)=\operatorname{Area}(A B P Q)+\operatorname{Area}(A D S Q)-a \cdot \operatorname{Area}(\triangle B P T)-b \cdot \operatorname{Area}(\triangle D S V)$
(P, T, Q, R, V and S are collinear and their order
is as indicated in the diagram at the right.)

D) $x^{14 k}-x^{8 k}-x^{6 k}+1$ is factored completely over the integers, as a product of binomials and trinomials, where each lead coefficient is +1 . The sum of these factors can be written in the form $A x^{4 k}+B x^{2 k}+C x^{k}+D$. Determine the ordered quadruple (A, B, C, D).
E) Given: $\sin 54^{\circ}=\frac{\sqrt{5}+1}{4}$. In simplified form, $\sin 144^{\circ} \sin 72^{\circ}=\frac{\sqrt{A}}{B}$. Determine (A, B).
F) Given: $A B=B C, A D=A C$ and
$\mathrm{m} \angle B A D, \mathrm{~m} \angle A D C, \mathrm{~m} \angle A D B$ form an increasing arithmetic progression,
where $(m \angle A D B-m \angle A D C)^{2}=m \angle A D C+60^{\circ}$. Compute $\mathrm{m} \angle B A D$.

download the free trial online at nitropdf.com/professional

Round 1 Algebra 2: Complex Numbers (No Trig)
A) -1
B) $(-2,5)$
C) 8

Round 2 Algebra 1: Anything
A) 1056
B) 63
C) $(\mathrm{A}, \$ 22.80)$

Round 3 Plane Geometry: Area of Rectilinear Figures
A) $7: 9$
B) 600
C) 288

Round 4 Algebra 1: Factoring and its Applications
A) 42
B) $308 x^{2} y^{3} \mathrm{z}$
C) $(2 A+3 B-4 W)(2 A+3 B+4 W)$

Round 5 Trig: Functions of Special Angles
A) 0
B) -1
C) $\frac{\sqrt{2}-\sqrt{6}}{4}$

Round 6 Plane Geometry: Angles, Triangles and Parallels
A) 120
B) $(9,2)$
C) 78

Team Round
A) $\left(\frac{4}{5}, \frac{3}{5}\right)$
B) 4 or $\frac{25}{16}$
C) $\left(-\frac{9}{16},-\frac{21}{4}\right)$
D) $(1,3,4,4)$
E) $(5,4)$
F) 72

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2010 SOLUTION KEY

Round 1

A) $\left(\frac{1-i}{1+i}\right)^{2010}=\left(\frac{1-i}{1+i} \cdot \frac{1-i}{1-i}\right)^{2010}=\left(\frac{(1-i)^{2}}{1-i^{2}}\right)^{2010}=\left(\frac{-2 i}{2}\right)^{2010}=(-1)^{2010} \cdot i^{2008} \cdot i^{2}=1 \cdot 1 \cdot-1=\underline{-\mathbf{1}}$

If you know DeMoirve's theorem, you might want to use it to formulate an alternative solution for comparison.
B) Equating the real and imaginary coefficients, $\left\{\begin{array}{l}x^{2}-x-5=1 \\ y^{2}-7 y+3=-7\end{array} \rightarrow\right.$

$$
\left\{\begin{array}{l}
x^{2}-x-6=(x-3)(x+2)=0 \\
y^{2}-7 y+10=(y-2)(y-5)=0
\end{array} \rightarrow x=3,-2 \text { and } y=2,5 \rightarrow(3,5),(-2,5),(3,2),(-2,2) \rightarrow(\mathbf{(- 2 , 5)}\right.
$$

C) $(1+i) \cdot\left\{\begin{array}{l}(1+i) \\ (-1+i) \\ (-1-i) \\ (1-i)\end{array}=\left\{\begin{array}{l}2 i \\ -2 \\ -2 i \\ 2\end{array}\right.\right.$

The new figure is a square with side $2 \sqrt{2}$, so the area is $\underline{8}$.
Alternate solution: The area of the original square is $2^{2}=4$, and multiplying the vertices by $(1+i)$ rotates the square 45° and expands each side by

a factor of $|1+i|=\sqrt{2}$. Therefore, the new square will have area $4(\sqrt{2})^{2}=\underline{\mathbf{8}}$.

Round 2

A) $\frac{5280 / 4 \text { feet }}{60 \text { min }} \cdot 48$ min $=\frac{\frac{5280}{4}(4)}{5}=\frac{5280}{5}=\underline{\mathbf{1 0 5 6}}$ feet
B) $\left\{\begin{array}{l}\text { (1) } \quad 10 t+u=7(t+u) \\ \text { (2) }(10 t+u)(t+u)=567\end{array}\right.$
(1) $\rightarrow t=2 u$

Substituting for $10 t+u$ in (2), $7(t+u)^{2}=567 \rightarrow(t+u)^{2}=81 \rightarrow t+u=3 u=9$
$\rightarrow u=3, t=6 \boldsymbol{\rightarrow} \underline{\mathbf{6 3}}$
C) Discounts of $162 / 3 \% \rightarrow 1 / 6$ off, $121 / 2 \% \rightarrow 1 / 8$ off and $4 \% \rightarrow 1 / 25$ off

Merchant A's price $\frac{5}{6} \cdot \frac{7}{8} \cdot \frac{24}{25}=\frac{7}{10}=70 \%$ of list (or 30% off list).
Merchant B's price: $(.92)(.9)(.85)=.7038=70.38 \%$ of list (or 29.62% off list).
Thus, merchant A has the best price by 0.38% (less than 1\%)
$\rightarrow \frac{0.38}{100}(6000)=0.38(60)=22.8 \rightarrow \underline{\mathbf{\$ 2 2 . 8 0}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2010 SOLUTION KEY

Round 3

A) As a median, $P Q=\frac{12+20}{2}=16$ and the altitudes of trapezoids $A B Q P$ and $P Q C D$ are equal in length. Thus, the required ratio is $\frac{\frac{1}{2} h(12+16)}{\frac{1}{2} h(16+20)}=\frac{28}{36}=\frac{7}{\underline{9}}$

B) $P Q=12, Q C=9 \rightarrow P C=15 \rightarrow$ diagonal $A C=30$ Perimeter $=100 \rightarrow D C=25, D Q=16, D P=20 \rightarrow$ diagonal $B D=40$ Thus the area of the rhombus $=\frac{1}{2} d_{1} d_{2}=\frac{1}{2} \cdot 30 \cdot 40=\underline{\mathbf{6 0 0}}$

C) $\triangle B E F \sim \triangle C E D, \frac{B E}{C E}=\frac{1}{2}$ and $C D=3 x \rightarrow B F=\frac{3}{2} x$

Therefore, $\frac{1}{2} x \cdot \frac{3}{2} x=24 \rightarrow x^{2}=32$
$\rightarrow \operatorname{area}(A B C D)=3 x \cdot 3 x=9 x^{2}=9(32)=\underline{\mathbf{2 8 8}}$
Alternate solution (MaryBeth McGinn / Tuan Le): $\frac{\operatorname{area}(\triangle B E F)}{\operatorname{area}(\triangle D E C)}=\frac{B E^{2}}{E C^{2}}=\frac{1}{4} \rightarrow \operatorname{area}(\triangle D E C)=96$

$\frac{\operatorname{area}(\triangle B E F)}{\operatorname{area}(\triangle A D F)}=\frac{B E^{2}}{A D^{2}}=\frac{1}{9} \rightarrow \frac{\operatorname{area}(\triangle B E F)}{\operatorname{area}(B A D E)}=\frac{1}{8} \rightarrow \operatorname{area}(B A D E)=192 \rightarrow \operatorname{area}(A B C D)=\underline{\mathbf{2 8 8}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2010 SOLUTION KEY

Round 4

A) Since the middle coefficient is -1 , we start with $(a, b)=(1,2)$.
$x^{2}-x-n=(x+1)(x-2)$ which gives $n=2$.
Thus, the absolute value of the difference between a and b must always be 1 .
$2(3) \rightarrow 63(4) \rightarrow 124(5) \rightarrow 205(6) \rightarrow 306(7) \rightarrow \underline{42} \quad 7(8) \rightarrow 56$ (too big)
B) Given: $P=280 x^{3} y^{2}, \operatorname{GCF}(P, Q)=28 x^{2} y^{2}$ and $\operatorname{LCM}(P, Q)=3080 x^{3} y^{3} z$.

Note: Given any two integers m and $n, m n=\operatorname{GCF}(m, n) \cdot \operatorname{LCM}(m, n)$.
$\operatorname{Ex}: \operatorname{GCF}(24,30)=6$ and $\operatorname{LCM}(24,30)=120$ and $24(30)=6(120)=720$
The same principle applies to literal expressions.
$P Q=\operatorname{GCF}(P, Q) \cdot \operatorname{LCM}(P, Q) \rightarrow 280 x^{3} y^{2}(Q)=\left(28 x^{2} y^{2}\right)\left(3080 x^{3} y^{3} z\right)$
$\rightarrow x^{3} y^{2} Q=308 x^{5} y^{5} z \rightarrow Q=\underline{\mathbf{3 0 8} \boldsymbol{x}^{2} \boldsymbol{y}^{\mathbf{3}} \boldsymbol{z}}$.
C) Combining like terms, $8 A^{2}-7 A B+13 B^{2}-3 W^{2}-4 B^{2}-4 A^{2}+19 A B-13 W^{2}$
$=4 A^{2}+12 A B+9 B^{2}-16 W^{2}=(2 A+3 B)^{2}-(4 W)^{2}$.
As the difference of perfect squares this factors to $\underline{(2 A+3 B-4 W)(2 A+3 B+4 W)}$

Round 5

A) The numerator $\cot \left(45^{\circ}\right)+2 \sin \left(210^{\circ}\right)$ evaluates to $1+2\left(-\frac{1}{2}\right)=0$.

Without bothering to evaluate, we note that the denominator is nonzero, since the tangent of a first quadrant angle is positive. Thus, the expression evaluates to $\mathbf{0}$.
B) $\left(\sin 510^{\circ} \cos 240^{\circ} \cot ^{3} 315^{\circ} \csc \frac{11 \pi}{6} \sec \left(\frac{-7 \pi}{3}\right)\right)^{5}=\left(\sin 150^{\circ} \cos 240^{\circ} \cot ^{3} 315^{\circ} \csc \frac{11 \pi}{6} \sec \left(\frac{5 \pi}{3}\right)\right)^{5}$
$=\left(\sin 30^{\circ} \cdot-\cos 60^{\circ} \cdot-\cot ^{3} 45^{\circ} \cdot-\csc 30^{\circ} \cdot \sec 60^{\circ}\right)^{5}=$
$\left(\sin 30^{\circ} \cdot-\csc 30^{\circ} \cdot-\cos 60^{\circ} \cdot \sec 60^{\circ} \cdot-\cot ^{3} 45^{\circ}\right)^{5}=\left((-1)(-1)(-1)^{3}\right)=\underline{\mathbf{- 1}}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2010 SOLUTION KEY

Round 5-continued

C) The given information is marked in the diagram below and, taking note of the embedded 30-60-90 triangle, we know that $E F=\frac{1}{2}$ and $F B=\frac{\sqrt{3}}{2}$.
Both $\triangle E D F$ and $\triangle B C F$ are isosceles right triangles whose sides are in a $1: 1: \sqrt{2}$ ratio.

$$
\begin{aligned}
& F C=B C=A D=\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{3}}{2 \sqrt{2}}=\frac{\sqrt{6}}{4} \\
& D E=D F=\frac{1}{2} \cdot \frac{1}{\sqrt{2}}=\frac{1}{2 \sqrt{2}}=\frac{\sqrt{2}}{4} \\
& A B=D F+F C=\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4}=\frac{\sqrt{6}+\sqrt{2}}{4} \\
& A E=A D-D E=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

Thus, $\cos (\angle B E D)=\cos \left(105^{\circ}\right)=-\cos \left(75^{\circ}\right)=-\frac{A E}{B E}=\frac{\sqrt{2}-\sqrt{6}}{4}$
This approach is an alternative to using the usual expansion of $\cos (A+B)$ which would not be known by all students in this round. Thanks again to MaryBeth McGinn for this gem. The question, diagram and solution are adapted directly from the 2008 MML Contest \#2 notes and the study guide MML Contest 2 A-Questions + Solutions (05-09).

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2010 SOLUTION KEY

Round 6

A) $2 x-2 y=2(x-y)$
$\angle \mathrm{s} 1$ and 2 are supplementary
$(x-y)+2(x-y)=3(x-y)=180 \rightarrow x-y=60$
Therefore, without having to solve for x and y, the larger of the vertical angles is $\mathbf{1 2 0}^{\circ}$.

Alternate Solution:
Vertical angles $\rightarrow x-y=20+y \rightarrow x=20+2 y$
Linear Pair $(\angle \mathrm{s} 1$ and 2$) \rightarrow 3 x-3 y=180 \rightarrow x-y=60$
Substituting, $20+2 y-y=60 \rightarrow y=40, x=100 \rightarrow$ larger vertical angles $\underline{\mathbf{1 2 0}}^{\circ}$.
B) Solve for (x, y) given $A B=A C$.

Since base angles of an isosceles triangle are congruent,
$7 x+4 y=8 x-\frac{y}{2} \rightarrow x=\frac{9}{2} y$
Since the exterior angle of any triangle equals the sum of the measures of the two remote interior angles,
$10 x+10 y-1=(4 x+y)+(7 x+4 y) \rightarrow x=5 y-1$
Substituting, $5 y-1=\frac{9}{2} y \rightarrow y=2 \rightarrow(x, y)=\underline{(\mathbf{9}, \mathbf{2})}$.

C) In $\triangle H I K, x+y=60$.

Applying the fact that the measure of exterior angle equals the sum of the measures of the two remote interior angles to $\triangle H K B$ forces $\mathrm{m} \angle K H B=20$.
$\angle G F H$ and $\angle I H J$, as corresponding angles of parallel lines, forces $x+(y-3)=(y+10)+20$
$\rightarrow x=33 \rightarrow\left\{\begin{array}{l}a=57 \\ y=33\end{array}\right.$ and $\mathrm{m} \angle D F G=123$.
As alternate interior angles of parallels, $\mathrm{m} \angle D G F=\mathrm{m} \angle E D G=b$.
Therefore, in $\triangle D F G, b=180-(36+123)=21$
$\rightarrow a+b=\underline{78}$.
Alternate Solution (Tuan Le)
As an exterior angle, $\mathrm{m} \angle H K I=\mathrm{m} \angle H K I+\mathrm{m} \angle H K I$
$\rightarrow \mathrm{m} \angle B H K=20^{\circ}$
In $\triangle H I B, x+y+30=90 \rightarrow x+y=60$.
Since $\overline{H I} \| \overline{F G}, \mathrm{~m} \angle B F G=\mathrm{m} \angle B H I \rightarrow$

$x+y-3=y+30 \rightarrow x=33, y=27$ and $a=57$.
$\overline{D E} \| \overline{A C} \rightarrow a=b+36 \rightarrow b=21$. Thus, $a+b=51+27=\underline{\mathbf{7 8}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2010 SOLUTION KEY

Team Round

A) Given : $\left\{\begin{array}{l}\frac{1}{z}=\bar{z} \\ a+b=1.4 \text { and } z=a+b i \text {. Substitute } b=\left(\frac{7}{5}-a\right) \text { in } \frac{1}{a+b i}=a-b i \Leftrightarrow a^{2}+b^{2}=1 \\ a>b\end{array}\right.$
$a^{2}+\left(\frac{7}{5}-a\right)^{2}=1 \rightarrow 2 a^{2}+\frac{49}{25}-\frac{14 a}{5}=1 \rightarrow 50 a^{2}-70 a+24=0$
$\rightarrow 25 a^{2}-35 a+12=(5 a-3)(5 a-4)=0$
$a>b \rightarrow(a, b)=\underline{\left(\frac{4}{5}, \frac{3}{5}\right)}$.
Alternate solution (Norm Swanson)
$z \cdot \bar{z}=1 \rightarrow z$ lies on the unit circle with center at $(0,0)$. So, let $a=\cos (t)$ and $b=\sin (t)$ and consequently, $a^{2}+b^{2}=1$.
Squaring the second equation, $a^{2}+2 a b+b^{2}=\left(\frac{7}{5}\right)^{2} \rightarrow 2 a b=\frac{49}{25}-1=\frac{24}{25} \rightarrow a b=\frac{12}{25}$.
We want two numbers whose sum is $7 / 5$ and whose product is $12 / 25$.
Clearly, $3 / 5$ and $4 / 5$ satisfy the requirement.
$a>b \rightarrow(a, b)=\underline{\left(\frac{4}{5}, \frac{3}{5}\right)}$.
B) Rearranging terms, $1-\frac{1}{x^{2}}=\frac{1}{2 x}-\frac{1}{2 x^{3}} \rightarrow \frac{x^{2}-1}{x^{2}}=\frac{x^{2}-1}{2 x^{3}}$

Since $x \neq 0$, this simplifies to $\frac{x^{2}-1}{1}=\frac{x^{2}-1}{2 x}$
For $x= \pm 1$, both terms are 0 ; otherwise, equating the denominators, $2 x=1 \rightarrow x=1 / 2$
Thus, $\left(x^{2}+1\right)^{2}=2^{2}$ or $(5 / 4)^{2} \rightarrow\left(x^{2}+1\right)^{2}=\underline{4}$ or $\mathbf{2 5 / 1 6}$
Alternate Solution: $(x \neq 0)$ Multiplying through by $2 x^{3}, 1-2 x-x^{2}+2 x^{3}=0$
$\rightarrow(1-2 x)-x^{2}(1-2 x)=0 \rightarrow(1-2 x)\left(1-x^{2}\right)=0 \rightarrow x= \pm 1$ or $1 / 2 \rightarrow\left(x^{2}+1\right)^{2}=\mathbf{4}$ or 25/16

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2010 SOLUTION KEY

Team Round

C) Compared to $A B C D$, the trapezoids $A B P Q$ and $A D S Q$ combined include some regions that should be excluded and exclude some regions that should be included. $\triangle B P T$ and $\triangle D S V$ should be excluded, while $\triangle C R T$ and $\triangle C R V$ should be included.

Since $\triangle B P T \sim \triangle C R T$ and $B P: C R=4: 5$, $\operatorname{Area}(\triangle B P T): \operatorname{Area}(\triangle C R T)=16: 25$.
Since $\triangle D S V \sim \triangle C R V$ and $D S: C R=2: 5$, Area $(\triangle D S V): \operatorname{Area}(\triangle C R V)=4: 25$. Let (X, Y) denote the areas of $\triangle B P T$ and $\triangle D S V$ respectively. Then
$\operatorname{Area}(A B C D)=\operatorname{Area}(A B P Q)+\operatorname{Area}(A D S Q)-\underline{X}-\underline{Y}+\frac{25}{16} \underline{X}+\frac{25}{4} \underline{Y}$
$=\operatorname{Area}(A B P Q)+\operatorname{Area}(A D S Q)+\frac{9}{16} \underline{X}+\frac{21}{4} \underline{Y} \rightarrow(a, b)=\left(-\frac{\mathbf{9}}{\mathbf{1 6}},-\frac{\mathbf{2 1}}{4}\right)$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2010 SOLUTION KEY

Team Round - continued
D) $x^{14 k}-x^{8 k}-x^{6 k}+1=\left(x^{6 k}-1\right)\left(x^{8 k}-1\right)=\left(x^{3 k}+1\right)\left(x^{3 k}-1\right)\left(x^{4 k}+1\right)\left(x^{4 k}-1\right)$
$=\left(x^{k}+1\right)\left(x^{2 k}-x^{k}+1\right)\left(x^{k}-1\right)\left(x^{2 k}+x^{k}+1\right)\left(x^{4 k}+1\right)\left(x^{2 k}+1\right)\left(x^{k}+1\right)\left(x^{k}-1\right)$
Thus, the sum of the factors is $x^{4 k}+3 x^{2 k}+4 x^{k}+4 \boldsymbol{\rightarrow}(\mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{4})$.
E) $\sin 54^{\circ}=\frac{\sqrt{5}+1}{4} \rightarrow \cos 36^{\circ}=\frac{\sqrt{5}+1}{4}$. Utilizing basic identities,
$\sin 2 \theta \sin \theta=2 \sin ^{2} \theta \cos \theta=2 \cos \theta\left(1-\cos ^{2} \theta\right) \quad\left({ }^{* * *)}\right.$
$\rightarrow \sin 144^{\circ} \sin 72^{\circ}=\sin \left(180^{\circ}-36^{\circ}\right) \sin 72^{\circ}=\sin 36^{\circ} \sin \left(2(36)^{\circ}\right)$
Let $\theta=36$. Then $\left({ }^{* * *}\right) \rightarrow \sin 144^{\circ} \sin 72^{\circ}=2 \cos 36^{\circ}\left(1-\cos ^{2} 36^{\circ}\right)$
$=2\left(\frac{\sqrt{5}+1}{4}\right)\left(1-\left(\frac{\sqrt{5}+1}{4}\right)^{2}\right)=\left(\frac{\sqrt{5}+1}{2}\right)\left(\frac{16-6-2 \sqrt{5}}{16}\right)=\left(\frac{\sqrt{5}+1}{2}\right)\left(\frac{5-\sqrt{5}}{8}\right)=\frac{4 \sqrt{5}}{16}=\frac{\sqrt{5}}{4}$
$\rightarrow(A, B)=\mathbf{(5 , 4)}$.
F) Let $\mathrm{m} \angle B A D, \mathrm{~m} \angle A D C, \mathrm{~m} \angle A D B=a-d, a$ and $a+d$ respectively and $d^{2}=a+60$. Since $B A=B C, \mathrm{~m} \angle C=\mathrm{m} \angle B A C$, so $a-d+\mathrm{m} \angle D A C=a$ $\rightarrow \mathrm{m} \angle D A C=d$. But notice also that in $\triangle D A C$, the vertex angle $D A C$ has measure 180-2a.
Equating and solving for $a, d=180-2 a \rightarrow a=\frac{180-d}{2}$.
Thus, $d^{2}=a+60$ becomes $d^{2}=\frac{180-d}{2}+60$
$\rightarrow 2 d^{2}=180-d+120 \rightarrow 2 d^{2}+d-300=(2 d+25)(d-12)=0 \rightarrow d=12$ only, $a=84$. ($d=-12.5 \rightarrow a=96.25$ which is impossible for the base angle in an isosceles triangle.) Finally, $\mathrm{m} \angle B A D=84-12=\underline{\mathbf{7 2}}$.

