MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012

ROUND 1 TRIG: RIGHT ANGLE PROBLEMS, LAWS OF SINES AND COSINES

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Compute the sine of the smaller acute angle in a right triangle whose hypotenuse has length 37 and whose long leg has length 35.
B) In square $A B C D$, points E and F lie on $\overline{A D}$ and $\overline{A B}$ respectively such that $A E: D E=2: 1$ and $A F: F B=2: 1$. Compute $\cos (\angle F C E)$.
C) In $\triangle A B C, \frac{B C}{A C}=\frac{2}{\sqrt{7}}$. Compute $7 \cos ^{2} A-4 \cos ^{2} B$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2012
 ROUND 2 ARITHMETIC/NUMBER THEORY

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Compute the absolute value of the cube of the difference between the unit digits of 2^{71} and 3^{44}.
B) In a certain positive integer base $b, 314_{(b)}$ is twice $132_{(b)}$. Compute b.
C) Determine the $117^{\text {th }}$ natural number that is divisible by 2 or 3 , but not divisible by either 4 or 6 .

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2012
 ROUND 3 COORDINATE GEOMETRY OF LINES AND CIRCLES

ANSWERS
A) $k=$ \qquad
B) $a=$ \qquad
C) \qquad , \qquad
A) The lines $y=m x+1$ and $y=\frac{2 x}{5}-m$ intersect at the point $(6, k)$.

Determine the value of k.
B) Let circle $C_{1}=\left\{(x, y) \mid x^{2}+y^{2}=36\right\}$ and line $\mathcal{L}=\{(x, y) \mid y=x\}$. Circle C_{2} has its center on \mathcal{L} outside of C_{1} and is tangent to the x-axis at $X(a, 0)$, the y-axis at $Y(0, b)$ and circle C_{1} at point T. Compute the value of a.

C) When removed, the label on a cylindrical can is a rectangle. Suppose the height (H) of the can is 4 times the radius (r) of the base. The label is placed in quadrant 1 of the $x y$-plane as shown in the diagram at the right. The distance from point O to point P can be expressed in terms of H and r in simplest form as $\frac{\sqrt{A \pi^{2}+B}}{C} \frac{H^{2}}{r}$, where A, B and C are positive integers.

Compute the ordered triple (A, B, C).

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2012
 ROUND 4 ALG 2: LOG \& EXPONENTIAL FUNCTIONS

ANSWERS

A) \qquad
B) \qquad
C) (\qquad , \qquad , \qquad)
A) Compute the real value(s) of x for which $8^{x}=\sqrt[3]{\frac{2}{4^{x}}}$.
B) The real number a is the x-intercept of the function $f(x)=-3+4 \log _{16} x$.

Compute $\left(\frac{\log _{2} a^{8}}{\log _{4} a^{2}}\right)^{\frac{1}{3}}$.
C) Given: $y_{1}=2\left(4^{x}\right), y_{2}=\frac{8^{x+2}}{4}$

For $x=a \log _{2} b+c$, where a, b and c are integers and b is as small as possible, $y_{2}=81 y_{1}$. Compute the ordered triple (a, b, c).

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2012
 ROUND 5 ALG 1: RATIO, PROPORTION OR VARIATION

ANSWERS

A) $k=$ \qquad
B) (\qquad , \qquad)
C) \qquad
A) 20% of A plus 60% of B equals 100% of B.
30% of B plus 10% of A is equivalent to $k \%$ of A. Compute k.
B) According to Newton's law of universal gravitation, the force of attraction (F) between two bodies varies directly with the product of the masses (m_{1} and m_{2}) and inversely with the square of the distance (d) between them. The actual calculations could get quite messy, so here we use some simplistic measurements.
Suppose $F_{1}=0.004$, when $\left(m_{1}, m_{2}, d\right)=(2,4,12)$.
Let k be the proportionality constant.
Let F_{2} be the force between two bodies when $\left(m_{1}, m_{2}, d\right)=(3,6,8)$.
Compute the ordered pair $\left(k, F_{2}\right)$.
C) Let P be the difference between the cubes of two consecutive integers.

Let Q be the difference between the squares of two consecutive integers.
If $P: Q=13: 1$, compute the smallest possible sum of the larger cube and the smaller square.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2012 ROUND 6 PLANE GEOMETRY: POLYGONS (no areas)

ANSWERS

A) \qquad
B) \qquad。
\qquad

B) The interior angles of pentagon P have degree-measures of $x^{2}, x^{2}, 13 x+100,120$ and 170 . Compute the sum of the measures of the largest two angles in P.
C) Given: $A B C D$ is a square, E and F are points on $\overline{A B}$ and $\overline{B C}$ respectively. $A E=C F . K$ is the point of intersection of $\overline{A F}$ and $\overline{C E}$. $m \angle B A F=40^{\circ}$
Compute $m \angle E K F$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2012
 ROUND 7 TEAM QUESTIONS
 ANSWERS

A) \qquad D) (\qquad , \qquad)
B) \qquad E) \qquad
C) \qquad F) \qquad
A) Given: a, b are relatively prime integers, $a>b$. Compute the minimum perimeter of $\triangle A B C$ in which $(\cos \angle A)<\frac{1}{10}$.

B) In the 8×8 grid at the right there are squares of three different sizes that do not contain the " X ".
Consider all possible squares on this grid from 1×1 through 8 x 8 inclusive. How many of these squares do not contain the "X" ?

C) Let R denote the radius of circle O which is circumscribed about square $A B C D$.
Let $\left(r_{1}, r_{2}, r_{3}\right)$ be the radii of the circles centered at P, Q and S respectively.
Circle Q and S are tangent at O.
Circle Q is also tangent to two sides of the square.
Circle P is externally tangent to square $A B C D$ and internally tangent to circle O.
If $r_{1}+r_{2}+r_{3}=k R$, compute k as a simplified fraction.

D) Given: $f(x)=\left\{\begin{array}{l}2 \cdot 4^{x}+A+3, \text { if } x \geq 2 \\ A \log _{4} x+B, \text { if } 0<x<2\end{array}\right.$ is a piecewise function and $A+B=17$.

Compute the ordered pair of integers (A, B) for which this function is continuous at $x=2$.
E) Given: $x=2, y<0, z>0$ and $\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}$

Compute the largest possible value of y.
F) Compute the maximum number of sides in a regular polygon in which the number of diagonals is less than the degree measure of an interior angle.

MASSACHUSETTS MATHEMATICS LEAGUE

 CONTEST 3 - DECEMBER 2012 ANSWERSRound 1 Trig: Right Triangles, Laws of Sine and Cosine
A) $\frac{12}{37}$
B) $\frac{3}{5}$
C) 3

Round 2 Arithmetic/Elementary Number Theory
A) 343
B) 5
C) 350

Round 3 Coordinate Geometry of Lines and Circles
A) $\frac{11}{5}$
B) $6(\sqrt{2}+1)$
C) $(1,4,8)$

Round 4 Alg 2: Log and Exponential Functions
A) $\frac{1}{11}$
B) 2
C) $(4,3,-3)$

Round 5 Alg 1: Ratio, Proportion or Variation
A) 25
B) $\left(\frac{9}{125}, \frac{81}{4000}\right)$ or
C) 225
(0.072, 0.02025)

Round 6 Plane Geometry: Polygons (no areas)
A) $4+9 \sqrt{2}$
B) 348
C) 170

Team Round
A) 840
B) 166
C) $\frac{3 \sqrt{2}}{4}$
D) $(-12,29)$
E) -3
F) 19

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Round 1

A) The smaller angle is opposite the shorter leg which we find by using the Pythagorean Theorem, $37^{2}=35^{2}+x^{2} \Rightarrow x^{2}=37^{2}-35^{2}$.
Recognizing this as the difference of perfect squares, we avoid the need to square these numbers.

$$
37^{2}-35^{2}=(37+35)(37-35)=72 \cdot 2=144 \Rightarrow x=12
$$

Thus, SOHCAHTOA $\Rightarrow \sin \theta=\underline{\frac{12}{37}}$.

B) With no loss of generality, assume the side of square $A B C D$ is 3 . Using the Pythagorean Theorem, the sides of $\triangle F C E$ are easily determined. Using the Law of Cosines on $\triangle F C E$,

$$
8=10+10-2 \cdot 10 \cos \theta \Rightarrow \cos \theta=\frac{12}{20}=\underline{\frac{3}{5}} .
$$

Alternate solution:
Recognizing that $\triangle E F C$ is isosceles, draw the perpendicular bisector $\overline{C M}$ of the base $\overline{E F}$, where M is the midpoint of $\overline{E F} . \overline{C M}$ bisects $\angle F C E$.
Appling the Pythagorean Theorem, $C F=\sqrt{10}, E F=\sqrt{8}=2 \sqrt{2}$

$C M=\sqrt{8}, \sin \alpha=\frac{\sqrt{2}}{\sqrt{10}}, \cos \alpha=\frac{\sqrt{8}}{\sqrt{10}} \cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=\frac{8}{10}-\frac{2}{10}=\frac{\mathbf{3}}{\underline{5}}$.
C) Using the Law of Sines $\left(\frac{B C}{\sin A}=\frac{A C}{\sin B}\right)$, we have $\frac{B C}{A C}=\frac{\sin A}{\sin B}=\frac{2}{\sqrt{7}}$

Squaring both sides and substituting for $\sin ^{2}, \frac{\sin ^{2} A}{\sin ^{2} B}=\frac{1-\cos ^{2} A}{1-\cos ^{2} B}=\frac{4}{7}$
Cross multiplying, $7-7 \cos ^{2} A=4-4 \cos ^{2} B \Leftrightarrow 7 \cos ^{2} A-4 \cos ^{2} B=\underline{\mathbf{3}}$.
Amazingly, for a right triangle the answer is still 3.
If $\triangle A B C$ is a right triangle, A cannot be the right angle. ($\overline{B C}$ would be the hypotenuse and $2 \nvdash \sqrt{7}$.)
If B is the right angle, then $A B=\sqrt{3}$ and $7\left(\frac{\sqrt{3}}{\sqrt{7}}\right)^{2}-4(0)^{2}=7 \cdot \frac{3}{7}-0=\underline{\mathbf{3}}$.
If C is the right angle, then $A B=\sqrt{11}$ and $7\left(\frac{\sqrt{7}}{\sqrt{11}}\right)^{2}-4\left(\frac{2}{\sqrt{11}}\right)^{2}=7 \cdot \frac{7}{11}-4 \cdot \frac{4}{11}=\frac{49-16}{11}=\underline{\mathbf{3}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Round 1 - continued

Alternate solutions/Generalizations to 1C (Norm Swanson):
Assume $\triangle A B C$ is isosceles with $A B=A C=\sqrt{7}$ and $B C=2$. Then: $\cos B=\frac{1}{\sqrt{7}}=\sin \left(\frac{A}{2}\right)$
Using the double angle formula, $\cos A=1-2 \sin ^{2}\left(\frac{A}{2}\right)=1-2\left(\frac{1}{7}\right)=\frac{5}{7} \Rightarrow 7\left(\frac{25}{49}\right)-4\left(\frac{1}{7}\right)=\frac{21}{7}=\underline{\mathbf{3}}$.
Or
Consider the "collapsed" triangle $A B C$ where $A=B=0^{\circ}$ and $C=180^{\circ}$. Then: $7 \cos ^{2} A-4 \cos ^{2} B=7 \cos ^{2} 0^{\circ}-4 \cos ^{2} 180^{\circ}=7(1)-4(1)=\underline{3}$

Try proving this generalization:
In any triangle $A B C$, where $\frac{B C}{A C}=\frac{n}{m}, m^{2} \cos ^{2} A-n^{2} \cos ^{2} B=m^{2}-n^{2}$
This is equivalent to the identity $\frac{b \cos A-a \cos B}{b-a} \cdot \frac{b \cos A+a \cos B}{b+a}=1$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Round 2

A) The unit digits of both the powers of 2 and the powers of 3 repeat in cycles of 4 .
$2^{1}=\underline{2}, 2^{2}=\underline{4}, 2^{3}=\underline{8}, 2^{4}=\underline{6}, 2^{5}=3 \underline{2}$ For any positive integer $k, 2^{4 k}$ has a unit digit of 6.
$3^{1}=\underline{3}, 3^{2}=\underline{9}, 3^{3}=27,3^{4}=8 \underline{1}$ For any positive integer $k, 3^{4 k}$ has a unit digit of 1 .
$2^{71}=\left(2^{4}\right)^{17} \cdot 2^{3}=(\ldots 6)^{17} \cdot 8$.
Since the powers of a number ending in 6 always end in $6,2^{71}$ ends in 8.
$3^{44}=\left(3^{4}\right)^{11}=(\ldots 1)^{11}$.
Since the powers of a number ending in 1 always end in $1,3^{44}$ ends in 1 .
$\left|(8-1)^{3}\right|=7^{3}=\underline{\mathbf{3 4 3}}$
B) $314_{(b)}=3 b^{2}+1 b+4$ and $132_{(b)}=1 b^{2}+3 b+2$

Therefore, $3 b^{2}+b+4=2\left(b^{2}+3 b+2\right) \Leftrightarrow b^{2}-5 b=b(b-5)=0$ and $b=\underline{\mathbf{5}}$.
or, alternately, with digits of $1,2,3$ and 4 , the base must be at least 5 . By trial and error, the first trial works.

$$
\begin{aligned}
& 314_{(5)}=3(25)+5+4=84 \\
& 132_{(5)}=25+3(5)+2=42
\end{aligned} \text { and } 84=2(42) \text {, so } b=\underline{\mathbf{5}} .
$$

C) Consider the first 12 natural numbers. $1 \underline{2} \underline{3} 45678 \underline{9} \underline{10} 1112$

Exactly four of them are divisible by 2 or 3 , but not 4 or 6 , namely the underlined values.
Since 12 is the least common multiple of 2, 3, 4 and 6, it follows that
($N+12$) satisfies the required conditions if and only if N does. Thus, in the second block of
12 natural numbers, $14,15,21$ and 22 satisfy the divisibility requirements.
In each block of 12 natural numbers, the four numbers satisfying the required conditions will always be the second, third, ninth and tenth numbers.
Since $117=29 \cdot 4+1$, the first 29 blocks will contain 116 numbers satisfying the divisibility requirements and the $117^{\text {th }}$ natural number will be in the $30^{\text {th }}$ block.
The first block ends in $12=12(1)$, the second in $24=12(2)$. The $N^{\text {th }}$ block ends in $12 N$. Thus, the last number in the $29^{\text {th }}$ block is $29 \cdot 12=348$. The required number is the second number in the next block, namely $\underline{\mathbf{3 5 0}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Round 3

A) Substituting the coordinates of the point of intersection into both equations,

$$
\left\{\begin{array}{l}
k=6 m+1 \\
k=\frac{2}{5} \cdot 6-m
\end{array} \Rightarrow 6 m+1=\frac{12}{5}-m \Rightarrow 7 m=\frac{7}{5} \Rightarrow m=\frac{1}{5} \text { and } k=\frac{\mathbf{1 1}}{\underline{5}}\right.
$$

B) Note that $\mathrm{m} \angle P O X=45^{\circ}$, so $O X P Y$ is a square and $a=b$.
$O T=6 \Rightarrow O Q=3 \sqrt{2}$
Let $P X=P Y=r$
$\Delta T O Q \sim \triangle P O X \Leftrightarrow \frac{T O}{P O}=\frac{Q O}{X O} \Leftrightarrow$
$\frac{6}{r+6}=\frac{3 \sqrt{2}}{r} \Rightarrow 2 r=r \sqrt{2}+6 \sqrt{2} \Rightarrow$

$r=\frac{6 \sqrt{2}}{2-\sqrt{2}}=\frac{6 \sqrt{2}(2+\sqrt{2})}{4-2}=3 \sqrt{2}(2+\sqrt{2})=6 \sqrt{2}+6=\mathbf{6}(\sqrt{\mathbf{2}}+\mathbf{1})$
Alternate solutions:
Consider isosceles right $\triangle P O X$. $O T=6 \Rightarrow a \sqrt{2}=a+6 \Rightarrow a=\frac{6}{\sqrt{2}-1}$ and the same result follows or, using the P.T. and the quadratic formula, $a^{2}+a^{2}=(a+6)^{2} \Rightarrow a^{2}-12 a-36=0$ $\Rightarrow \frac{12 \pm \sqrt{144-4(-36)(-1)}}{2}=\frac{12 \pm \sqrt{144(2)}}{2}=6+6 \sqrt{2} \quad(6-6 \sqrt{2}<0$, rejected $)$
C) $H=P Q=4 r$. Since $O Q$ is the circumference of a base of a cylinder, $O Q=2 \pi r$ and $O P^{2}=(2 \pi r)^{2}+(4 r)^{2}=4 r^{2}\left(\pi^{2}+4\right)$.
Thus, $O P=2 r \sqrt{\pi^{2}+4} \Rightarrow(A, B)=(1,4)$

$$
\frac{H^{2}}{C r}=2 r \Leftrightarrow \frac{(4 r)^{2}}{C r}=2 r \Leftrightarrow 2 C r^{2}=16 r^{2} \Rightarrow C=8
$$

$(A, B, C)=\underline{(1,4,8)}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Round 4

A) $8^{x}=\sqrt[3]{\frac{2}{4^{x}}} \Leftrightarrow 2^{3 x}=\left(\frac{2^{1}}{2^{2 x}}\right)^{\frac{1}{3}}=\left(2^{1-2 x}\right)^{\frac{1}{3}}=2^{\frac{1-2 x}{3}} \Leftrightarrow 3 x=\frac{1-2 x}{3} \Rightarrow 9 x=1-2 x \Rightarrow x=\underline{\underline{\mathbf{1}}}$

Alternate solution:
Cubing both sides, $8^{3 x}=\frac{2}{4^{x}} \Rightarrow 2^{9 x}=\frac{2^{1}}{2^{2 x}}=2^{1-2 x} \Rightarrow 9 x=1-2 x \Rightarrow x=\underline{\frac{\mathbf{1}}{\mathbf{1 1}}}$.
B) Since the x-intercept of $y=-3+4 \log _{16} x$ is determined by letting $y=0$, we have $\log _{16} a=\frac{3}{4} \Leftrightarrow a=16^{\frac{3}{4}}=2^{3}=8$.
$\left(\frac{\log _{2} a^{8}}{\log _{4} a^{2}}\right)^{\frac{1}{3}}=\left(\frac{\log _{2} 8^{8}}{\log _{4} 8^{2}}\right)^{\frac{1}{3}}=\left(\frac{\log _{2}\left(2^{3}\right)^{8}}{\log _{4}\left(4^{3}\right)}\right)^{\frac{1}{3}}=\left(\frac{24}{3}\right)^{\frac{1}{3}}=\underline{2}$
C) $y_{2}=81 y_{1} \Rightarrow y_{2}=81\left(2\left(4^{x}\right)\right)=81\left(2^{2 x+1}\right)$. Also, $y_{2}=\frac{8^{x+2}}{4}=\frac{2^{3 x+6}}{2^{2}}=2^{3 x+4}$

Thus, $81\left(2^{2 x+1}\right)=2^{3 x+4}$
$\Rightarrow 81=\frac{2^{3 x+4}}{2^{2 x+1}}=2^{x+3} \Rightarrow x+3=\log _{2} 81=2 \log _{2} 9=4 \log _{2} 3$
b as small as possible $\Rightarrow x=4 \log _{2} 3-3 \Rightarrow \underline{(4,3,-3)}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Round 5

A) $.2 A+.6 B=B \Leftrightarrow 2 A+6 B=10 B \Leftrightarrow A=2 B$
$.3 B+.1 A=.3\left(\frac{A}{2}\right)+.1 A=\left(\frac{3}{20}+\frac{1}{10}\right) A=\frac{1}{4} A \Rightarrow k=\underline{\mathbf{2 5}}$.
Alternately, pick a convenient value of A, say 100 .
Applying the first condition, $20+.6 B=B \Rightarrow 20=.4 B \Leftrightarrow B=50$.
Remember $k \%$ is equivalent to k parts out of 100 , i.e. $\frac{k}{100}$.
Applying the second condition, $10+15=\frac{k}{100} \cdot 100 \Rightarrow k=\underline{\mathbf{2 5}}$.
B) The variation rule is $F=\frac{k m_{1} m_{2}}{d^{2}}$.
$F_{1}=0.004=\frac{4}{1000}=\frac{1}{250}$ Substituting, $\frac{1}{250}=k \cdot \frac{8}{144}=\frac{k}{18} \Rightarrow k=\frac{9}{125}$ (or 0.072)
For the second scenario, $F_{2}=\frac{\frac{9}{125} \cdot 3 \cdot 6}{64}=\frac{81}{4000}$ (or 0.02025)
Thus, $\left(k, F_{2}\right)=\left(\frac{\mathbf{9}}{\mathbf{1 2 5}}, \frac{\mathbf{8 1}}{\mathbf{4 0 0 0}}\right)$ or $\underline{(\mathbf{0 . 0 7 2}, \mathbf{0 . 0 2 0 2 5})}$. Of course, the lead zeros are optional.
C) $\frac{(N+1)^{3}-N^{3}}{(A+1)^{2}-A^{2}}=\frac{3 N^{2}+3 N+1}{2 A+1}=\frac{3 N(N+1)+1}{2 A+1}$

Note the numerator, as 3 times the product of two consecutive integers, plus 1 must be odd. Therefore, the denominator must also be odd.
$A=1 \Rightarrow$ denom $=3 \Rightarrow$ numerator $=39$ (impossible $3 N^{2}+3 N-38=0$ has no integer solutions)
$A=3 \Rightarrow$ denom $=7 \Rightarrow$ numerator $=91$
$\left(3 N^{2}+3 N-90=3\left(N^{2}+N-30\right)=3(N+6)(N-5)=0\right)$
Thus, for $N=5$ and $A=3$, the larger cube is 216 and the smaller square is $9 \Rightarrow \underline{\mathbf{2 2 5}}$.
As A increases, so does N. Therefore we have the smallest possible sum.
Alternate solution:
The differences Q between consecutive squares $1,4,9,16,25, \ldots$ are $3,5,7,9, \ldots$.
The differences P between consecutive cubes $1,8,27,64,125, \ldots$ are $7,19,37,61, \ldots$
Notice: In this second sequence, the differences between consecutive terms are $12,18,24, \ldots$, an amount that is increasing by 6 . Thus, the next term is $61+30=91=13(7)$. Since we are looking for a term in the P sequence which is 13 times a term in the Q sequence, we have the first occurrence and $6^{3}+3^{2}=216+9=\underline{\mathbf{2 2 5}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Round 6

A) "Completing" the rectangle, we recognize two common right triangles, 3-4-5 and 5-12-13.
The required value is $(13+9 \sqrt{2})-9=\underline{4+9 \sqrt{2}}$.

B) The sum of the degree-measures of the 5 angles in any pentagon $=(5-2) 180=540$.

Thus, in P, we have $2 x^{2}+(13 x+100)+120+170=540$.
$\Leftrightarrow 2 x^{2}+13 x-150=0$
$\Leftrightarrow(2 x+25)(x-6)=0 \Leftrightarrow x=-\frac{25}{2}, 6$
$x=-\frac{25}{2}$ is rejected, because $(13 x+100)$ becomes negative.
$x=6 \Rightarrow 36,36,178,120,170 \Rightarrow$ largest sum $=\underline{\mathbf{3 4 8}}$.
C) Let $m \angle E K F=\theta^{\circ} . m \angle A F B=50^{\circ}$
$A E=C F \Rightarrow B E=B F$.
Since $\triangle B E C \cong \triangle B F A$ (SAS), $m \angle B C E=40^{\circ}, m \angle B E C=50^{\circ}$
Thus, $\theta=360-90-2(50)=\underline{\mathbf{1 7 0}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Team Round

A) Since $\cos A=\frac{b}{a+2}$, we could simply examine Pythagorean Triples, where the long leg and hypotenuse differ by 2. However, looking for a pattern could take a while. Let's take a different tact. Applying the Pythagorean Theorem, $a^{2}+b^{2}=(a+2)^{2} \Rightarrow b^{2}=4(a+1) \Rightarrow b=2 \sqrt{a+1}$
Since b must be an integer, $a+1$ must be a perfect square

\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{c}
6	8	10
8	15	17
10	24	26
12	35	37
14	48	50

So, we only need consider a-values like $3,8,15,24,35, \ldots$. and the b-values are easy to compute, as are the hypotenuses (simply add 2 to a).
$a+1=6^{2}=36 \Rightarrow a=35 \Rightarrow 35-12-37 \Rightarrow \cos A=\frac{12}{37}>\frac{12}{120}=0.1$, so we have a ways to go.
$16^{2}=256 \Rightarrow a=255 \Rightarrow b=32, a+2=257 \Rightarrow \cos A>0.1$, so we continue.
$18^{2}=324 \Rightarrow a=323 \Rightarrow b=36, a+2=325 \Rightarrow \cos A>0.1$ (getting close!)
$19^{2}=361 \Rightarrow a=360 b=38, a+2=362 \Rightarrow \cos A>0.1$ (closer).
$20^{2}=400 \Rightarrow a=399 b=40, a+2=401 \Rightarrow \cos A<0.1$ (Bingo!).

Thus, the minimum perimeter is $\underline{\mathbf{8 4 0}}$.
B) Counting the squares of all possible sizes:
1×1 : 64
A 2×2 square can have its upper left cell in any column, except column 8, and in any row, except row 8. Thus, there are $7 \times 7=49$ squares of side 2 .
$3 \times 3: 364 \times 4: 25 \quad 5 \times 5: 16$
6x6: $97 \times 7: 48 \times 8: 1$
Counting those that do not contain the " X ":
1×1 squares $\quad \Rightarrow 63$
Of the 492×2 squares only $\underline{4}$ contain the " X " $\Rightarrow 45$
The " X " would have to be in the
UL, UR, LL or LR cell of the 2×2 square and
all these squares fit on the grid.
Of the 363×3 squares only 6 contain the " X " $\Rightarrow 30$
The " X " could only be in the center or
rightmost columns of a 3×3 square.
Of the 254×4 squares only 8 contain the " X " $\Rightarrow 17$
The " X " could only be in the rightmost two columns of a 4×4 square.
Of the 165×5 squares only 8 contain the " X " $\Rightarrow 8$
Of the 96×6 squares 6 contain the " X " $\Rightarrow 3$
All the 7×7 and 8×8 squares contain the " X ".
The total " X "-less squares is then $\underline{\mathbf{1 6 6}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Team Round - continued

C) Let $R=O B=2$ and $A S=r_{3}=1$.

Then $r_{1}+r_{2}+r_{3}=k R \Leftrightarrow r_{1}+r_{2}+1=2 k$.
Since $m \angle O B C=45^{\circ}$ and the side of square $A B C D$ is $2 \sqrt{2}$, $r_{1}=\frac{2-\sqrt{2}}{2}=1-\frac{\sqrt{2}}{2}$

Finding r_{2} is the hardest.
Recall that the incenter of a triangle (as the intersection point of the angle bisectors) is equidistant from the three vertices. The radius of the inscribed circle (center at Q) is equivalent to the area of the triangle ($\triangle B C D$) divided by its semi-perimeter.
Since the area of the square is 8 , we have $r_{2}=\frac{4}{\frac{(4 \sqrt{2}+4)}{2}}=\frac{2}{\sqrt{2}+1} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1}=2(\sqrt{2}-1)$
Thus, $2 k=\left(1-\frac{\sqrt{2}}{2}\right)+2(\sqrt{2}-1)+1 \Rightarrow k=\frac{3 \sqrt{2}}{4}$.
If you were unfamiliar with the relationship of the radius of the inscribed circle in a triangle and the area/perimeter of the triangle, consider the cutout diagram of the lower right corner of the overall diagram.
$O C=2 \Rightarrow Q C=r_{2} \sqrt{2} \Rightarrow r_{2}+r_{2} \sqrt{2}=2$
Solving, $r_{2}=\frac{2}{\sqrt{2}+1} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1}=2(\sqrt{2}-1)$ and the result follows.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Team Round - continued

D) For $x=2$, the top level of the function rule applies and $f(2)=A+35$. The piecewise function is defined by the logarithmic component to the left of the vertical line $x=2$ and by the exponential component to the right. As x approaches 2 from the left, $f(x)$ approaches $A \log _{4}(2)+B=\frac{A}{2}+B$. If the function is to be continuous at $x=2$, then these function values must be equal, namely $A+35=\frac{A}{2}+B$.
Combining with $A+B=17$, we have
$\frac{A}{2}+(17-A)=A+35 \Rightarrow A+34-2 A=2 A+70 \Rightarrow A=-12$
Thus, $(A, B)=(\mathbf{- 1 2 , 2 9)}$.
Graphically, since $A<0$, the logarithmic piece is flipped. Each piece is itself continuous, but there is a gap at $x=2$
To close the gap the logarithmic piece must be translated (dropped) so that point P (the hole) coincides with the endpoint Q.
E) Given: $x=2, y<0, z>0$ and $\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}$

Substituting for x, we have $\frac{2+y}{z}=\frac{y+z}{2}=\frac{2+z}{y}$
Cross multiplying the first two fractions, $4+2 y=y z+z^{2} \Leftrightarrow z^{2}+y z-2(y+2)=0$
Since this is a quadratic equation in z, using the QF,
$z=\frac{-y \pm \sqrt{y^{2}+8(y+2)}}{2}=\frac{-y \pm \sqrt{(y+4)^{2}}}{2}=\frac{-y \pm(y+4)}{2}$
Thus, $z=2,-(y+2)$.
Case 1:
$z=2 \Rightarrow \frac{2+y}{2}=\frac{y+2}{2}=\frac{2+2}{y}=\frac{4}{y}$ which is satisfied if $y^{2}+2 y-8=(y+4)(y-2)=0$
$\Rightarrow y=2,-4 \Rightarrow(x, y, z)=2,2,2)$ or $(2,-4,2)$ The first solution is rejected, since $y>0$.
Case 2:
$z=-(y+2)>0 \Rightarrow y<-2$ and solution must be of the form $(2, y,-(y+2))$.
Picking y as large as possible, we have $(2,-3,1)$.
Thus, the maximum value of y is $\underline{-3}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Team Round - continued

F) We require that $\frac{n(n-3)}{2}<\frac{180(n-2)}{n}$.

Since $n>0$, we can cross multiply. $n^{2}(n-3)<360(n-2) \Leftrightarrow n^{3}-3 n^{2}-360 n+720<0$
Using direct or synthetic substitution, we want the smallest n that satisfies the inequality.

1	-3	-360	720

20|1 $17-20 \quad>0$ (20 sides fails)
19| $1 \quad 16-56<0$ ($\underline{\mathbf{1 9}}$ sides works)
Check: 19 sides: $\frac{19(16)}{2}=152$ diagonals $/ \frac{180(17)}{19}=161^{+}$degrees $\quad\left(152<161^{+}\right)$
20 sides: $\frac{20(17)}{2}=170$ diagonals $/ \frac{180(18)}{20}=162$ degrees $\quad(170 \nless 162)$

Addendum:

The original contest had two appeals in round 3
B) The original question was

Let circle $C_{1}=\left\{(x, y) \mid x^{2}+y^{2}=36\right\}$ and line $\mathcal{L}=\{(x, y) \mid y=x\}$.
Circle C_{2} has its center on \mathcal{L} and is tangent to the x-axis at $X(a, 0)$, the y-axis at $Y(0, b)$ and circle C_{1} at point T.
Compute the value of a.

In the second line the phrase outside of C_{1} was omitted and since there is a circle inside of C_{1} which satisfies the verbally stated conditions of the problem, $6(\sqrt{2}-1)$ was also accepted.
C) The original question was

When removed, the label on a cylindrical can is a rectangle. Suppose the height (H) of the can is 4 times the radius (r) of the base. The label is placed in quadrant 1 of the $x y$-plane as shown in the diagram at the right. The distance from point O to point P can be expressed in terms of H and r in simplest form as $A \sqrt{B} \frac{H^{2}}{r}$, where A and B are positive constants and B is
 expressed in terms of π. Compute the ordered pair (A, B).

Since it was perfectly logical for a student to proceed $O P^{2}=H^{2}+O Q^{2}=H^{2}+(2 \pi r)^{2}$
Substituting for $r, H^{2}+H^{2} \cdot \frac{\pi^{2}}{4}=H^{2}\left(1+\frac{\pi^{2}}{4}\right)$
$O P=H \sqrt{1+\frac{\pi^{2}}{4}}$ and $B=1+\frac{\pi^{2}}{4}$

Now $\frac{A H^{2}}{r}=H \Rightarrow A H^{2}=H r=\frac{H^{2}}{4} \Rightarrow A=\frac{1}{4}$
An alternate answer of $\left(\frac{1}{4}, \frac{\pi^{2}}{4}+1\right)$ was also accepted.

