MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 ROUND 1 COMPLEX NUMBERS (No Trig)

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Given: $(3+4 i)^{2}+a+b i=3+k i$, where a and b are real.

Compute k such that $a=-b$.
B) Given: $\sqrt{12-5 i}=x+y i$ for real numbers x and y. Compute $\frac{x^{2}}{y^{4}}$.
C) If $\frac{(3 \sqrt{3}-3 i)^{3}-(3 \sqrt{3}+3 i)^{3}}{108}=x+y i$, compute $x^{3}+y^{3}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 SOLUTION KEY

Round 1

A) $(3+4 i)^{2}+a+b i=9-16+24 i+a+b i=(a-7)+(b+24) i=3+k i$

Equating the real and imaginary parts, $a=10$ and $k=b+24 \Leftrightarrow b=k-24$.
Therefore, $k-24=-10 \Rightarrow k=\underline{14}$.
B) Squaring both sides of $\sqrt{12-5 i}=x+y i,\left\{\begin{array}{l}x^{2}-y^{2}=12 \\ 2 x y=-5 \\ x^{2}+y^{2}=13\end{array}\right.$.

Where did this third equation come from? We could have solved the second equation for y in terms of x and substituted in the first, but adding the first and third will be much easier. Consider $|12-5 i|$ - the absolute value of the radicand. As on the real number line, the absolute value of a complex number is its distance from the origin $O(0,0)$. Let $x+y i$ be represented by the point $P(x, y)$ in the complex plane and we have $|x+y i|=O P=\sqrt{x^{2}+y^{2}}$, regardless of the quadrant in which P is located.
Extracting, $\sqrt{(12)^{2}+(-5)^{2}}=\sqrt{144+25}=\sqrt{169}=13$ (or recall the Pythagorean Triple 5-12-13)
Thus, adding the first and third equations and dividing by $2, x^{2}=\frac{12+13}{2}=\frac{25}{2}$.
Subtracting the same equations, $2 y^{2}=1 \Rightarrow y^{4}=\frac{1}{4}$. Thus, $\frac{x^{2}}{y^{4}}=\underline{\mathbf{5 0}}$. Note that:
$\sqrt{12-5 i}$ denotes either $\frac{5 \sqrt{2}}{2}-\frac{\sqrt{2}}{2} i$ or $-\frac{5 \sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$. In both cases, $2 x y=-5$ and $x^{2}-y^{2}=12$.
C) Simply! Simplify! Simplify!

Recall: $(A \pm B)^{3}=A^{3} \pm 3 A^{2} B+3 A B^{2} \pm B^{3}$
Thus, in the expansion, the first and third terms cancel
Therefore, $(A+B i)^{3}-(A-B i)^{3}=6 A^{2} B i-2 B^{3} i=2 B\left(3 A^{2}-B^{2}\right) i$.

$$
\frac{(3 \sqrt{3}-3 i)^{3}-(3 \sqrt{3}+3 i)^{3}}{108}=\frac{\not 2 k\left((\sqrt{3}-i)^{3}-(\sqrt{3}+i)^{3}\right)}{\not k^{6} \cdot 4}
$$

Since $A=\sqrt{3}$ and $B=-1$, we have $x+y i=\frac{2 \cdot(-1) \cdot\left(3 \cdot 3-(-1)^{2}\right) i}{4}=-4 i \Rightarrow(x, y)=(0,-4)$.
Thus, $x^{3}+y^{3}=(-4)^{3}=\underline{-64}$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2014
 ROUND 2 ALGEBRA 1: ANYTHING

ANSWERS

A) $x=$ \qquad
B) \qquad
C) (\qquad , \qquad , \qquad)
A) For some positive constant A, if $x=1$ is a solution of the equation $|x-A|=5$, what is the other solution?
B) Given: $(2 x-A)(3 x+B)=0$ for positive integer constants A and B.

Compute $A^{2}-B^{2}$, if $A+B=7$ and the sum of the solutions (for x) is an integer.
C) Given: $x \# y=\frac{x}{2}+\frac{y}{3}$ for integers x and y.

For some minimum integer $k>10,\left\{\begin{array}{l}x \# y=k \\ 2 x+3 y=k\end{array}\right.$. Compute the ordered triple (k, x, y).

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 SOLUTION KEY

Round 2

A) $|1-A|=5 \Leftrightarrow 1-A= \pm 5 \Leftrightarrow A=1 \pm 5=\not \subset, 6$
$|x-6|=5 \Leftrightarrow x-6= \pm 5 \Leftrightarrow x=1, \underline{11}$
B) The sum of the solutions is $\frac{A}{2}+\frac{-B}{3}=\frac{3 A-2 B}{6}$.

Testing the 6 possible ordered pairs $(6,1),(5,2),(4,3),(3,4),(2,5)$ and $(1,6)$,
only $(4,3)$ produces an integer solution sum $\left[\frac{3(4)-2(3)}{6}=1\right] \Rightarrow A^{2}-B^{2}=16-9=\underline{7}$.
C) $\frac{x}{2}+\frac{y}{3}=k \Leftrightarrow(1) 3 x+2 y=6 k$

$$
\text { (2) } 2 x+3 y=k
$$

Adding the two equations and dividing by 5 , we have $x+y=\frac{7 k}{5}$.
Since we were given that $k>10$ and x and y must be integers, $k_{\text {min }}=15$.
Substituting for y in (2), $2 x+3(21-x)=15 \Rightarrow x=48 \Rightarrow(\mathbf{1 5}, \mathbf{4 8},-\mathbf{2 7})$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2014
 ROUND 3 PLANE GEOMETRY: AREAS OF RECTILINEAR FIGURES

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) $A B C D$, a square with area 225 , is subdivided into 2 squares and 2 rectangles by perpendiculars that intersect at point E. If $C E=\sqrt{32}$, compute the area of the shaded region.

B) A side of the regular octagon $A B C D E F G H$ is $\sqrt{2}$. Compute the area of the square $A C E G$.

C) In $\triangle A B C$, the altitude is drawn to the hypotenuse of a 3-4-5 right triangle, intersecting the hypotenuse in point D. From point D, altitudes are drawn to the legs, intersecting $\overline{A B}$ in point P and intersecting $\overline{B C}$ in point Q. Compute the area of rectangle $D P B Q$, as a ratio of relatively prime integers.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 SOLUTION KEY

Round 3

A) $(x+y)^{2}=225 \Rightarrow A B=15$
$C E=\sqrt{32} \Rightarrow x=4, y=11$
Therefore, the area of the shaded region is $2(4 \cdot 11)=\underline{\mathbf{8 8}}$.

B) Using Pythagorean Theorem on right $\triangle A P C$,

$$
\begin{aligned}
& A C^{2}=(1+\sqrt{2})^{2}+1^{2} \\
& \Rightarrow A C^{2}=1+2 \sqrt{2}+2+1=\mathbf{4 + 2} \sqrt{2}
\end{aligned}
$$

C) The area of $\triangle A B C$ is $\frac{1}{2} \cdot 3 \cdot 4=\frac{1}{2} \cdot 5 \cdot h \Rightarrow h=\frac{12}{5}$.

Proceed by the Pythagorean Theorem
$9=x^{2}+\left(\frac{12}{5}\right)^{2} \Rightarrow x^{2}=\frac{9 \cdot 5^{2}-12^{2}}{5^{2}}=\frac{9(25-16)}{5^{2}}=\frac{9^{2}}{5^{2}}$

Thus, $A D=\frac{9}{5}$ and $C D=\frac{16}{5}$. Alternately,
$\triangle B A D \sim \triangle C A B \sim \triangle C B D \Rightarrow \frac{B A}{C B}=\frac{A D}{B D} \Rightarrow \frac{3}{4}=\frac{x}{h} \Rightarrow x=\left(\frac{3}{4}\right)\left(\frac{12}{5}\right)=\frac{9}{5}$ or, invoking the fact
that the altitude to the hypotenuse is the mean proportional between the segments on the hypotenuse, $h^{2}=x(5-x)$.
By similar arguments for triangles $B A D$ and $B C D, D P=\frac{36}{25}$ and $D Q=\frac{48}{25} \Rightarrow$
$\frac{36}{25} \cdot \frac{48}{25}=\underline{\frac{\mathbf{1 7 2 8}}{\mathbf{6 2 5}}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014

ROUND 4 ALG 1: FACTORING AND ITS APPLICATIONS

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Compute the greatest common factor of $42 x^{2} y z^{3}$ and $90 x^{3} z^{4}$.
B) Compute all rational values of x satisfying $(3 x+4)(8 x-5)=-23$.
C) Given: $x(x-2 A)+A(A+5)-4=5(x+4)$

Solve for x in terms of A.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 SOLUTION KEY

Round 4

A) As the product of primes, $42=2(3)(7)$ and $90=2(3)^{2} 5$.

Taking the smallest exponents of the common factors, The numerical component is $2(3)=6$ and the literal component is $x^{2} z^{3}$. Therefore, the GCF is $\underline{\mathbf{x x}^{2} z^{3}}$.
B) Since the product is not equal to zero, the factorization does not help. Multiplying out the left side and combining like terms, we have
$(3 x+4)(8 x-5)=-23 \Leftrightarrow 24 x^{2}+17 x+3=0$. Since the coefficient of the middle term is odd, the factors of 24 cannot both be even, leaving only possibilities of $24 \cdot 1$ or $8 \cdot 3$. If these fail, we would have to use the quadratic formula and none of the solutions would be rational.
Since $24 x^{2}+17 x+3=(8 x+3)(3 x+1)=0$ and we have rational solutions, namely, $x=\underline{-\frac{3}{8},-\frac{1}{3}}$.
C) $x(x-2 A)+A(A+5)-4=5(x+4) \Leftrightarrow\left(x^{2}-2 A x+A^{2}\right)+5 A-5 x-24=0$
$\Leftrightarrow(x-A)^{2}-5(x-A)-24=0$
$\Leftrightarrow(x-A-8)(x-A+3)=0$
$\Rightarrow x=\underline{A+8}$ or $x=\underline{A-3}$

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2014
 ROUND 5 TRIG: FUNCTIONS OF SPECIAL ANGLES

 ANSWERS

 ANSWERS}
A) \qquad
B) \qquad
C) (\qquad , \qquad)
A) Determine all values of x for which $\frac{\tan x-1}{(2 \sin x-1) \cos x\left(\tan ^{2} x-3\right)}$ is undefined over the interval $0^{\circ} \leq x \leq 180^{\circ}$. Express your answer(s) in degrees.
B) The graph of $f(x)=\sin (x) \sin (2 x)$ has a period of 2π as is easily seen in the graph below

Compute $f\left(\frac{-602 \pi}{3}\right)+f\left(\frac{602 \pi}{3}\right)-\left(f\left(\frac{\pi}{4}\right)\right)^{2}$.
C) Given: $m \angle A=120^{\circ}, A B=A C=11$
$E F G H$ is a square
If the area of $E F G H$ is $M-N \sqrt{3}$, compute the ordered pair (M, N).

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 SOLUTION KEY

Round 5

A) The value of the fraction is undefined only when the denominator is zero, or when one of the trig functions is undefined. We do not consider values of x for which the numerator is zero, namely 45°, since for this value the denominator is not 0 .
$2 \sin x-1=0 \Rightarrow \sin x=\frac{1}{2} \Rightarrow x=\underline{\mathbf{3 0}^{\circ}, \mathbf{1 5 0}^{\circ}}$
$\cos x=0 \Rightarrow x=\underline{\mathbf{9 0}^{\circ}}$ (Also, $\tan x$ is undefined for $x=90^{\circ}$.)
$\tan ^{2} x-3=0 \Rightarrow \tan x= \pm \sqrt{3} \Rightarrow x=\underline{\mathbf{6 0}^{\circ}, \mathbf{1 2 0}^{\circ}}$
B) Since $\sin (-x)=-\sin (x)$ and $\sin (-2 x)=-\sin (2 x)$, it follows that
$f(-x)=\sin (-x) \sin (-2 x)=\sin (x) \sin (2 x)=f(x)$. Thus, since
$\frac{602 \pi}{3}=200 \frac{2}{3} \pi$, with a period of 2π, we can disregard 200π.
$f\left(\frac{-602 \pi}{3}\right)=f\left(\frac{602 \pi}{3}\right)=f\left(\frac{2 \pi}{3}\right)=\sin \left(\frac{2 \pi}{3}\right) \sin \left(\frac{4 \pi}{3}\right)=\frac{\sqrt{3}}{2} \cdot \frac{-\sqrt{3}}{2}=-\frac{3}{4}$
$f\left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right) \cdot \sin \left(\frac{\pi}{2}\right)=\frac{\sqrt{2}}{2} \cdot 1=\frac{\sqrt{2}}{2}$
With these observations, the given expression evaluates to $2\left(-\frac{3}{4}\right)-\frac{1}{2}=\underline{-2}$.
(Ask your coach/teammates about even and odd functions.)
C) $B F+F G+G C=B C \Rightarrow 2 x \sqrt{3}+x=11 \sqrt{3} \Rightarrow x=\frac{11 \sqrt{3}}{2 \sqrt{3}+1} \cdot \frac{2 \sqrt{3}-1}{2 \sqrt{3}-1}=\frac{66-11 \sqrt{3}}{11}=6-\sqrt{3}$

Therefore, the area of $E F G H$ is
$(6-\sqrt{3})^{2}=36-12 \sqrt{3}+3=39-12 \sqrt{3}$
$\Rightarrow(M, N)=(39,12)$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 ROUND 6 PLANE GEOMETRY: ANGLES, TRIANGLES AND PARALLELS

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) $A B E$ is an isosceles triangle with base $\overline{B E}$.
$B C D E$ is a square, $m \measuredangle B A E=114^{\circ}$ and $\overrightarrow{A C}$ trisects $\measuredangle B A E$.
Compute $m \measuredangle A C D$.

B) In scalene triangle $A B C, m \angle A=(6 x+7)^{\circ}, m \angle B=(8 x-9)^{\circ}$ and the exterior angle at C has a measure of $\left(x^{2}+46\right)^{\circ}$. Compute all possible values of x.
C) In rectangle $A B C D$,
$m \angle A S T=(5 x-11)^{\circ}, m \angle P Q C=(2 x+15)^{\circ}$, where x is an integer.
Given that $\angle P T S$ is obtuse, compute the
 number of possible degree-measures of $\angle P T R$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 SOLUTION KEY

Round 6

A) Drop a perpendicular from A to $\overline{C D}$.
$m \measuredangle E A M=m \measuredangle B A M=57^{\circ}$.
$m \measuredangle B A F=\frac{1}{3} \cdot 114=38^{\circ} \Rightarrow m \measuredangle C A M=19^{\circ}$
$\Rightarrow m \measuredangle A C D=m \measuredangle A C M=90-19=\underline{\mathbf{7 1}}^{\circ}$

B) Since the measure of the exterior angle equals the sum of the measures of the two remote interior angles, we have $(6 x+7)+(8 x-9)=x^{2}+46 \Leftrightarrow x^{2}-14 x+48=(x-6)(x-8)=0$.

For $x=8, m \angle A=m \angle B=55^{\circ}$ and $A B C$ is isosceles. This solution is rejected.
For $x=6, m \angle A=43, m \angle B=39^{\circ}$, and $m \angle C=180-(43+39)=98$ and $A B C$ is scalene.
Thus, $x=\underline{\mathbf{6}}$ only.
C) In quadrilateral PAST,
$7 x+4+90+y=360 \Rightarrow y=266-7 x>90$
$\Rightarrow 7 x<176 \Rightarrow x \leq 25$
But we also know that $y<180$
$\Rightarrow 7 x>86 \Rightarrow x \geq 13$
Thus, $13 \leq x \leq 25$ generates all possible

values of $m \angle P T R$, a total of $\underline{13}$ different values.
Check: For $x=13, \ldots, 25$,
$m \angle P T R=180-y=7 x-86^{\circ} \Rightarrow 5^{\circ}, 12^{\circ}(5+7 \cdot 1), \ldots, 89^{\circ}(5+7 \cdot 12)-13$ distinct values.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2014
 ROUND 7 TEAM QUESTIONS

ANSWERS

A) \qquad D) \qquad
B) SUN MON TUE WED THU FRI SAT E \qquad
C) \qquad F) \qquad
A) Let $N=\frac{1}{(1-i)^{k}}$ for integer values of k.

If $10<k<100$, determine for how many values of k, N is real.
B) Misao Okawa, one of the oldest living persons in the world, celebrates his birthday in March. In 2014, his birthday fell on a Wednesday. On what day of the week did his birthday fall in 1898, the year he was born?
Recall that there are 365 days in a year, except in leap years. The extra day (2/29) is added only in non-century years divisible by 4 and in century years divisible by 400.
C) Given: Trapezoid $A B C D$ with $\overline{A D} \| \overline{B C}$ and $(A B, B C, C D, A M)=(30,87,51,24)$
An isosceles trapezoid $P Q R S$ has the same perimeter as $A B C D$, sides of integer length and an altitude equal in length to the altitude of

$A B C D$. Compute all possible areas of trapezoid $P Q R S$.
D) In each of the squares below, consider the lattice points within the triangular regions marked I and II. The lower left vertex in each square is the origin. The upper right vertices are (n, n) and $(n+1, n+1)$ respectively, where n is a positive integer. Compute all value of n for which the number of lattice points in region II is 5 more than the number of lattice points in region I.

E) Compute all possible values of $\sin \left(\frac{n \pi}{3}+\frac{m \pi}{6}\right)$, if m and n are both positive multiples of 3 .
F) $\triangle A B C$ is scalene and acute.

Its interior angles measure x°, y° and $(3 x-2 y)^{\circ}$, where x and y are integers. If $x+y<120$, compute the number of possible values of x.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 SOLUTION KEY

Team Round

A) Note that $N=\frac{1}{(1-i)^{k}}=\left(\frac{1}{1-i}\right)^{k}=\left(\frac{1+i}{2}\right)^{k}=2^{-k} \cdot(1+i)^{k}$

Since 2^{-k} is real for all integer values of k in the specified range, N is real whenever $(1+i)^{k}$ is real.
For $k=1$ to $4,(1+i)^{k}=1+i, 2 i,-2+2 i,-4$.
For $k=5$ to 8 , the values obtained are obtained by multiplying the above values by -4 .
There is one real value of N in every block of four consecutive k-values.
If k is a multiple of $4, N$ is real. N is real for $k=12,16, \ldots, 96$, or $4(3,4, \ldots, 24)$.
Thus, we have a total of $\underline{\mathbf{2 2}}$ different values of k.
B) 7 days before (or after) a given date will fall on the same day of the week.

Since $365=7 \cdot 52+1$, a non-leap year consists of 52 weeks and 1 day.
Therefore, from year to year, a given date advances 1 day of the week (DOW), unless 2/29 falls between the two dates. Moving back in time, starting in 2014, consider the following sequence:

14	13	12	11	10	9	8	7	6	5	4
	$\mathbf{- 1}$	$\mathbf{- 1}$	-2	-1	$\mathbf{- 1}$	$\mathbf{- 1}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{- 1}$	$\mathbf{- 1}$
WED	TUE	MON	SAT	FRI	THU	WED	MON	SUN	SAT	FRI

Since $2 / 29$ falls between $3 / 2011$ and $3 / 2012$ and between $3 / 2007$ and $3 / 2008$, the day of the week changes by 2 days. Over a 4 year period, DOW changes by 5 days, unless the 4 year period spans a century year which is not divisible by 400 (like the year 1900). Therefore, 112 years ago (284 -year periods), in 1902, the DOW has cycled through $28 \cdot 5=140$ days. Since 140 is divisible by 7, in 1902, his birthday fell on the same DOW, namely Wednesday. Since none of the remaining 4 intervening years were leap years, the DOW changes only by 4 days. In 1898, his birthday fell on a SAT. You are invited to apply Zeller's formula to his actual birthdate 3/5/1898 to confirm this result.

$$
z=\left[\frac{13 m-1}{5}\right]+\left[\frac{y}{4}\right]+\left[\frac{c}{4}\right]+d+y-2 c \text {, where }
$$

d denotes the day (1..31)
m denotes the month according to the following funky rule:
1 = March 2 = April ... $10=$ December and January and February are assigned
11 and 12 respectively for the previous year
c denotes the "century" in which the date falls ($\mathbf{Y Y Y Y \text {) }}$
y denotes the year ($Y Y \boldsymbol{Y}$), i.e. 0 ... 99
Now, divide z by 7.
The integer remainder determines the day of the week.
(0, Sunday), (1, Monday), (2, Tuesday)... (6, Saturday)

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 SOLUTION KEY

C) Drop perpendiculars from A and D to $\overline{B C}$. $B M=18 \quad(18,24,30)=6(3,4,5)$ $N C=45 \quad(24,45,51)=3(8,15,17)$
$B C=87 \Rightarrow M N=A D=(87-18+45)=24$
$\Rightarrow \operatorname{Per}(A B C D)=192$

$\operatorname{Per}(P Q R S)=2 x+2 y+2 c=192 \Rightarrow x+y+c=96$ and $(y, 24, c)$ is a Pythagorean triple The possible triples (with a leg of 24) are:

1) $6(3,4,5) \quad \Rightarrow(18,24,30)$
2) $8(3,4,5) \Rightarrow(24,32,40)$
3) $2(5,12,13) \Rightarrow(10,24,26)$
4) $(7,24,25)$
5) $3(8,15,17) \Rightarrow(24,45,51)$

6) $(24,143,145)$

Aside:

The system $\left\{\begin{array}{l}a=m^{2}-n^{2} \\ b=2 m n \\ c=m^{2}+n^{2}\end{array}\right.$ may be used to generate any Pythagorean triple. The triple will be
primitive whenever the greatest common factor of m and n is 1 .
The primitive triples 1) through 6) above were generated by $(m, n)=(2,1),(3,2),(4,3)$, $(4,1)$ and $(12,1)$.
From the list above, the possible values of $y+c$ are:
48 for $(y, c)=(18,30)$, 72 for $(y, c)=(32,40), 36$ for $(y, c)=(10,26), 32$ for $(y, c)=(7,25)$,
96 for $(y, c)=(45,51)-$ rejected $(\Rightarrow x=0) \quad 288$ for $(y, c)=(143,145)-$ also rejected $x=96-(y+c) \Rightarrow$ the allowable values of x are: 48, 24, 60, 64
Thus, the allowable corresponding values of (x, y) are: $(48,18),(24,32),(60,10)$ and $(64,7)$
Since the area $(P Q R S)=24(x+y)$, we have $24 \cdot\left[\begin{array}{l}66 \\ 56 \\ 70 \\ 71\end{array} \Rightarrow \underline{\mathbf{1 5 8 4}, \mathbf{1 3 4 4}, \mathbf{1 6 8 0}, \mathbf{1 7 0 4}}\right.$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 SOLUTION KEY

D) If a is odd, the diagonals do not intersect at a lattice point; for a even, they do.
Continuing to draw pics would quickly become tedious. Let's generalize.

Case even $(a=4)$:
There are $(a+1)^{2}$ lattice points, but we must exclude:
points on the boundary: $4(a+1)-4=4 a$

($4 \cdot$ points on each edge -4 corners which have been counted twice)
points on the diagonals (not already counted): $2((a+1)-2)-1=2 a-3$
(minus center point which is on both diagonals and has been counted twice)
Simplifying, $(a+1)^{2}-4 a-(2 a-3)=a^{2}-4 a+4=(a-2)^{2}$
Since each of the 4 regions has the same number of lattice points, we have $\frac{(a-2)^{2}}{4}$ (a even)
Case odd $(a=3)$:
There are $(a+1)^{2}$ lattice points, but we must exclude:
points on the boundary: $4 a$
points on the diagonals: $2(a+1)-4=2(a-1)$
Simplifying, $(a+1)^{2}-4 a-2(a-1)=a^{2}-4 a+3=(a-1)(a-3) \Rightarrow \frac{(a-1)(a-3)}{4}$ (a odd)
n odd \Rightarrow use $(n+1)$ for a in the even formula:
$\frac{((n+1)-2)^{2}}{4}-\frac{(n-1)(n-3)}{4}=5 \Leftrightarrow\left(n^{2}-2 n+1\right)-\left(n^{2}-4 n+3\right)=20 \Rightarrow 2 n=22 \Rightarrow n=\underline{\mathbf{1 1}}$
n even \Rightarrow use $(n+1)$ for a in the odd formula:

$$
\frac{((n+1)-1)((n+1)-3)}{4}-\frac{(n-2)^{2}}{4}=5 \Leftrightarrow\left(n^{2}-2 n\right)-\left(n^{2}-4 n+4\right)=20 \Rightarrow 2 n=24 \Rightarrow n=\underline{\mathbf{1 2}}
$$

Ask you teammates/coach about Pic's Theorem.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 SOLUTION KEY

E) Let $m=3 j$ and $n=3 k$ for positive integers j and k.
$\frac{n \pi}{3}+\frac{m \pi}{6}=\frac{\pi}{6}(2 n+m)=\frac{\pi}{6}(6 j+3 k)=\frac{\pi}{2}(2 j+k)$
Since j and k are positive integers, so is $2 j+k$.
Can we get all non-coterminal multiples of $\frac{\pi}{2}$?
Yes! $2 j+k$ produces all and only quadrantal values
$(j, k)=(1,1) \Rightarrow \frac{3 \pi}{2}$ and $\sin \left(\frac{3 \pi}{2}\right)=\underline{-1}$
$(j, k)=(1,2) \Rightarrow \frac{4 \pi}{2}$ and $\sin (2 \pi)=\underline{\mathbf{0}}$
$(j, k)=(2,1) \Rightarrow \frac{5 \pi}{2}$ and $\sin \left(\frac{5 \pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)=+\mathbf{1}$
$(j, k)=(2,2) \Rightarrow \frac{6 \pi}{2}$ and $\sin (3 \pi)=\sin (\pi)=0$
F) Let (A, B, C) denote the interior angles with measures $(x, y, 3 x-2 y)$.

Triangle Sum $\Rightarrow 4 x-y=180 \Rightarrow y=4 x-180$
Substituting in $x+y<120,5 x<300 \Rightarrow x<60$.
Thus, our starting point is $x=59 \Rightarrow(59,56,180-115=65)$
Decreasing x by 1 , decreases y by 4 , and consequently the third interior angle will increase by 5 .
We must stop when the largest angle C becomes a right angle.
Possible measures of C are 65, 70, 75, 80 and 85 , implying we have $\underline{5}$ possible x-values.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2014 ANSWERS

Round 1 Algebra 2: Complex Numbers (No Trig)
A) 14
B) 50
C) -64

Round 2 Algebra 1: Anything
A) 11
B) 7
C) $(15,48,-27)$

Round 3 Plane Geometry: Area of Rectilinear Figures
A) 88
B) $4+2 \sqrt{2}$
C) $\frac{1728}{625}$

Round 4 Algebra: Factoring and its Applications
A) $6 x^{2} z^{3}$
B) $-\frac{3}{8},-\frac{1}{3}$
C) $x=A+8, A-3$

Round 5 Trig: Functions of Special Angles
A) $30,60,90,120,150$
B) -2
C) $(39,12)$
(answers with degree symbols are acceptable)

Round 6 Plane Geometry: Angles, Triangles and Parallels
A) 71
B) 6 only
C) 13 [8 is extraneous.]

Team Round
A) 22
D) 11 or 12
B) SAT
E) $0, \pm 1$
C) $1344,1584,1680,1704$
F) 5
(in any order)

